Literatura académica sobre el tema "Soil carbon"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Soil carbon".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Soil carbon"
Zhang, Xiuwei y Feihai Yu. "Physical disturbance accelerates carbon loss through increasing labile carbon release". Plant, Soil and Environment 66, No. 11 (2 de noviembre de 2020): 584–89. http://dx.doi.org/10.17221/257/2020-pse.
Texto completoLiu, Yufei, Xiaoxu Fan, Tong Zhang, Xin Sui y Fuqiang Song. "Effects of atrazine application on soil aggregates, soil organic carbon and glomalin-related soil protein". Plant, Soil and Environment 67, No. 3 (1 de marzo de 2021): 173–81. http://dx.doi.org/10.17221/594/2020-pse.
Texto completoTobiašová, E., G. Barančíková, E. Gömöryová, J. Makovníková, R. Skalský, J. Halas, Š. Koco, Z. Tarasovičová, J. Takáč y M. Špaňo. "Labile forms of carbon and soil aggregates". Soil and Water Research 11, No. 4 (12 de octubre de 2016): 259–66. http://dx.doi.org/10.17221/182/2015-swr.
Texto completoMa, Xuexi, Zhengzhong Jin, Yingju Wang y Jiaqiang Lei. "Effects of Shelter Forests on Soil Organic Carbon of Irrigated Soils in the Taklimakan Desert". Sustainability 13, n.º 8 (19 de abril de 2021): 4535. http://dx.doi.org/10.3390/su13084535.
Texto completoKadlec, V., O. Holubík, E. Procházková, J. Urbanová y M. Tippl. "Soil organic carbon dynamics and its influence on the soil erodibility factor". Soil and Water Research 7, No. 3 (10 de julio de 2012): 97–108. http://dx.doi.org/10.17221/3/2012-swr.
Texto completoTobiašová, E., G. Barančíková, E. Gömöryová, B. Dębska y M. Banach-Szott. "Humus substances and soil aggregates in the soils with different texture". Soil and Water Research 13, No. 1 (24 de enero de 2018): 44–50. http://dx.doi.org/10.17221/31/2017-swr.
Texto completoCotching, W. E. "Carbon stocks in Tasmanian soils". Soil Research 50, n.º 2 (2012): 83. http://dx.doi.org/10.1071/sr11211.
Texto completoWhalen, Joann K., Shamim Gul, Vincent Poirier, Sandra F. Yanni, Myrna J. Simpson, Joyce S. Clemente, Xiaojuan Feng et al. "Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration". Canadian Journal of Plant Science 94, n.º 6 (agosto de 2014): 1065–73. http://dx.doi.org/10.4141/cjps2013-145.
Texto completoZhengzhong, Jin, Wang Yingju y Lei Jiaqiang. "Influence of plantation of a shelter-belt on component of organic carbon in the Taklimakan desert over last decade". E3S Web of Conferences 53 (2018): 04041. http://dx.doi.org/10.1051/e3sconf/20185304041.
Texto completoKumar, Kewat Sanjay. "Sustainable Management of Soil for Carbon Sequestration". Science & Technology Journal 5, n.º 2 (1 de julio de 2017): 132–40. http://dx.doi.org/10.22232/stj.2017.05.02.10.
Texto completoTesis sobre el tema "Soil carbon"
Renforth, Phil. "Mineral carbonation in soils : engineering the soil carbon sink". Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1216.
Texto completoBurgos, Hernández Tania D. "Investigating Soil Quality and Carbon Balance for Ohio State University Soils". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577141132704637.
Texto completoGottschalk, Pia. "Modelling soil organic carbon dynamics under land use and climate change". Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=186643.
Texto completoGmach, Maria Regina. "Sugarcane straw removal from the soil surface: effects on soil soluble products". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-18012019-174951/.
Texto completoO interesse no uso da palha de cana-de-açúcar como matéria-prima para a produção de bioenergia vem crescendo consideravelmente. No entanto, a remoção excessiva da palha pode afetar negativamente o funcionamento do solo. Portanto, o objetivo deste trabalho foi quantificar e caracterizar a solução ao longo do perfil sob níveis de remoção de palha da superfície do solo. Para isso, foi construído um sistema de lisímetros com colunas de 1, 20, 50 e 100 cm de solo, de textura franco argilo arenosa, proveniente de área comercial de cana-de-açúcar em Piracicaba-SP, Brasil. O experimento foi conduzido em área aberta, sujeito a precipitação e luz natural. Depois da estabilização do solo dentro dos tubos, foram adicionados os seguintes tratamentos: 0, 3, 6 e 12 Mg ha-1 de massa seca, representando 100 (solo nu), 75, 50 e 0% de intensidade de remoção de palha, respectivamente, sendo adicionados novamente após um ano. A solução percolada foi coletada e quantificada por 17 meses, a umidade do solo foi determinada por dois meses usando sensores. A concentração de carbono orgânico dissolvido (COD) foi mensurada com analisador automático. A solução do solo e solução da palha, feita por infusão em água, foram caracterizadas em HPLC para verificar a presença de compostos tóxicos. Posteriormente, as soluções da palha e solo foram usadas em testes de sementes de soja para avaliar os efeitos na germinação e crescimento inicial. Ao final do experimento, foram realizadas análises de densidade do solo e carbono orgânica do solo (COS). A palha remanescente foi pesada após um ano, anterior a nova adição, e pesada novamente ao final do experimento, para determinar a taxa de decomposição. O volume de solução percolado foi 30, 11 e 4% menor em 100, 75 e 50% do que em 0% de remoção, respectivamente. O solo descoberto armazenou menos água, indicando susceptibilidade à perda de água por evaporação. A simulação mostrou que 100 e 75% de remoção induzem longos períodos de restrição hídrica, que pode prejudicar o crescimento da planta. A produção de COD na camada superficial foi maior no solo sem remoção; a retenção foi maior de 1 a 20 cm em solo sem remoção, e maior em 20 a 50 cm em 50 e 75% de remoção. O solo descoberto liberou mais COD em de 20 cm do que em superfície, indicando perda de C. Abaixo de 100 cm, o COD lixiviado foi similar nos tratamentos, indicando grande retenção de C e pequenas perdas por lixiviação, mesmo em alta produção de COD. Mesmo com diferenças na retenção de COD, não foi identificado aumento no estoque de C abaixo de 5 cm. Foram encontrados compostos fenólicos na solução da palha, não encontrados na solução do solo, indicando que em condições naturais a palha não libera quantidades significativas de compostos tóxicos na solução do solo. O crescimento de plantas foi negativamente afetado pela solução da palha, mas não pela solução do solo. Nossos resultados sugerem que a manutenção de quantidade média de palha previne perdas e variação no conteúdo de água do solo. Maior quantidade de palha aumenta a produção de COD, que provavelmente altera sua composição, alterando a retenção no solo. O estoque de C não aumentou consideravelmente em subsuperfície, mas muito provavelmente aumentará em escala de tempo maior. Quanto maior a remoção de palha, proporcionalmente maior as taxas de C liberadas na forma de CO2 e COD em subsuperfície, consequentemente, menor a retenção de C no solo. Maiores quantidades de palha na superfície liberam mais C para o solo, retido ou translocado com a água, podendo ser estocado em maiores profundidades do solo. Maior percolação de água no solo não significa maiores perdas de C por lixiviação em profundidade.
Kuntz, Marianne. "Carbon : an important regulator of denitrification in arable soil". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232081.
Texto completoChen, Yujuan. "The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51240.
Texto completoPh. D.
Tifafi, Marwa. "Different soil study tools to better understand the dynamics of carbon in soils at different spatial scales, from a single soil profile to the global scale". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV021/document.
Texto completoSoils are the major components ofthe terrestrial ecosystems and the largest organiccarbon reservoir on Earth, being very reactive tohuman disturbance and climate change. Despiteits importance within the carbon reservoirs, soilcarbon dynamics is an important source ofuncertainties for future climate predictions. Theaim of the thesis was to explore different aspectsof soil carbon studies (Experimentalmeasurements, modeling, and databaseevaluation) at different spatial scales (from thescale of a profile to the global scale). Wehighlighted that the estimation of the global soilcarbon stocks is still quite uncertain.Consequently, the role of soil carbon in theclimate dynamics becomes one of the majoruncertainties in the Earth system models (ESMs)used to predict future climate change. Thesecond part of thesis deals with the presentationof a new version of the IPSL-Land SurfaceModel called ORCHIDEE-SOM, incorporatingthe 14C dynamics in the soil. Several tests doneassume that model improvements should focusmore on a depth dependent parameterization,mainly for the diffusion, in order to improve therepresentation of the global carbon cycle inLand Surface Models, thus helping to constrainthe predictions of the future soil organic carbonresponse to global warming
Jenkins, Anthony Blaine. "Organic carbon and fertility of forest soils on the Allegheny Plateau of West Virginia". Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2486.
Texto completoTitle from document title page. Document formatted into pages; contains x, 282 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Stewart, Laura. "Carbon storage in an artificial soil". Thesis, Durham University, 2012. http://etheses.dur.ac.uk/3420/.
Texto completoPallasser, Robert Joseph. "Technique innovation in soil carbon measurement". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10062.
Texto completoLibros sobre el tema "Soil carbon"
Hartemink, Alfred E. y Kevin McSweeney, eds. Soil Carbon. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4.
Texto completoKutsch, Werner L., Michael Bahn y Andreas Heinemeyer, eds. Soil Carbon Dynamics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511711794.
Texto completoVercammen, James. Dynamic economic modeling of soil carbon. [Ottawa]: Agriculture and Agri-Food Canada, 2002.
Buscar texto completoJensen, Earl H. Soil survey of Carbon area, Utah. [Washington, D.C.?]: The Service, 1988.
Buscar texto completoR, Lal, ed. Assessment methods for soil carbon. Boca Raton, Fla: Lewis Publishers, 2001.
Buscar texto completoCycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Wiley, 1986.
Buscar texto completoStevenson, F. J. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. 2a ed. New York: Wiley, 1999.
Buscar texto completoSmith, W. Soil degradation risk indicator: Organic carbon component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Buscar texto completoR, Lal, ed. Management of carbon sequestration in soil. Boca Ration, Fla: CRC Press, 1998.
Buscar texto completo1960-, Kutsch Werner, Bahn Michael y Heinemeyer Andreas, eds. Soil carbon dynamics: An integrated methodology. New York: Cambridge University Press, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Soil carbon"
Berryman, Erin, Jeffrey Hatten, Deborah S. Page-Dumroese, Katherine A. Heckman, David V. D’Amore, Jennifer Puttere, Michael SanClements, Stephanie J. Connolly, Charles H. Perry y Grant M. Domke. "Soil Carbon". En Forest and Rangeland Soils of the United States Under Changing Conditions, 9–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45216-2_2.
Texto completoMesic, Milan, Márta Birkás, Zeljka Zgorelec, Ivica Kisic, Ivana Sestak, Aleksandra Jurisic y Stjepan Husnjak. "Soil Carbon Variability in Some Hungarian and Croatian Soils". En Soil Carbon, 419–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_41.
Texto completoFunakawa, Shinya, Kazumichi Fujii, Atsunobu Kadono, Tetsuhiro Watanabe y Takashi Kosaki. "Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils?" En Soil Carbon, 209–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_22.
Texto completoMcBratney, Alex B., Uta Stockmann, Denis A. Angers, Budiman Minasny y Damien J. Field. "Challenges for Soil Organic Carbon Research". En Soil Carbon, 3–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_1.
Texto completoWills, Skye, Terrance Loecke, Cleiton Sequeira, George Teachman, Sabine Grunwald y Larry T. West. "Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates". En Soil Carbon, 95–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_10.
Texto completoTunega, Daniel, Adelia J. A. Aquino, Georg Haberhauer, Hans Lischka, Gabriele E. Schaumann y Martin H. Gerzabek. "Molecular Models of Cation and Water Molecule Bridges in Humic Substances". En Soil Carbon, 107–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_11.
Texto completoAskari, Mohammad Sadegh y Nicholas M. Holden. "Rapid Evaluation of Soil Quality Based on Soil Carbon Reflectance". En Soil Carbon, 117–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_12.
Texto completoKiss, Klaudia, Zoltán Szalai, Gergely Jakab, Balázs Madarász y Nóra Zboray. "Characterization of Soil Organic Substances by UV-Vis Spectrophotometry in Some Soils of Hungary". En Soil Carbon, 127–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_13.
Texto completoAtanassova, Irena D., Stefan H. Doerr y Gary L. Mills. "Hot-Water-Soluble Organic Compounds Related to Hydrophobicity in Sandy Soils". En Soil Carbon, 137–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_14.
Texto completoYost, Jenifer L., Corey E. Palmer y Louise M. Egerton-Warburton. "The Contribution of Soil Aggregates to Carbon Sequestration in Restored Urban Grasslands". En Soil Carbon, 147–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_15.
Texto completoActas de conferencias sobre el tema "Soil carbon"
Al-Kaisi, Mahdi. "Soil Carbon Sequestration Potential". En Proceedings of the 10th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2000. http://dx.doi.org/10.31274/icm-180809-676.
Texto completoAl-Kaisi, Mahdi y Brent A. Brueland. "Managing Soil Carbon Sequestration". En Proceedings of the 13th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2003. http://dx.doi.org/10.31274/icm-180809-768.
Texto completoTudor, Clara. "SOIL CARBON AND SEWAGE WATER". En 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/3.2/s13.062.
Texto completoBARTEL, PAUL y MIKE MCGAHUEY. "SOIL CARBON SEQUESTRATION IN AFRICA". En International Seminar on Nuclear War and Planetary Emergencies 25th Session. Singapore: World Scientific Publishing Co. Pte. Ltd., 2001. http://dx.doi.org/10.1142/9789812797001_0073.
Texto completoOtero-Fariña, Alba, Helena Brown, Ke-Qing Xiao, Pippa Chapman, Joseph Holden, Steven Banwart y Caroline Peacock. "The role of soil organic carbon chemistry in soil aggregate formation and carbon preservation". En Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9955.
Texto completoSingh, Shikha, Sindhu Jagadamma, Junyi Liang, Gangsheng Wang y Melanie Mayes. "SENSITIVITY OF MICROBIAL PROCESSING OF SOIL CARBON TO SOIL MOISTURE IN DIFFERENTLY-TEXTURED SOILS". En 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312541.
Texto completoBaumgartl, Thomas, J. Chan, F. Bucka y E. Pihlap. "Soil organic carbon in rehabilitated coal mine soils as an indicator for soil health". En 14th International Conference on Mine Closure. QMC Group, Ulaanbaatar, 2021. http://dx.doi.org/10.36487/acg_repo/2152_121.
Texto completoKarklina, Ilze, Andis Lazdins, Jelena Stola, Aldis Butlers, Zaiga Anna Zvaigzne y Dana Purvina. "Soil carbon stock in fertilized forest stands with mineral soils". En Research for Rural Development 2021 : annual 27th International scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2021. http://dx.doi.org/10.22616/rrd.27.2021.007.
Texto completoBārdulis, Andis, Ainārs Lupiķis y Jeļena Stola. "Carbon balance in forest mineral soils in Latvia modelled with Yasso07 soil carbon model". En Research for Rural Development, 2017. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/rrd.23.2017.004.
Texto completoMeador, T., J. Niedzwiecka, S. Jabinski, T. Picek, R. Angel y H. Šantrůčková. "Modes of Soil Organic Carbon Sequestration and Carbon Use Efficiency Determined by Soil Aeration Status". En 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134129.
Texto completoInformes sobre el tema "Soil carbon"
Wielopolski, Lucian, G. Hendrey, I. Orion, S. Prior, H. Rogers, B. Runion y A. Torbert. NON-DESTRUCTIVE SOIL CARBON ANALYZER. Office of Scientific and Technical Information (OSTI), febrero de 2004. http://dx.doi.org/10.2172/15007355.
Texto completoAndress, D. Soil carbon changes for bioenergy crops. Office of Scientific and Technical Information (OSTI), abril de 2004. http://dx.doi.org/10.2172/834706.
Texto completoSawyer, John E., Mahdi Al-Kaisi, Daniel W. Barker y Weston Dittmer. Soil Nitrogen and Carbon Management Project. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-1507.
Texto completoMontz, A., V. R. Kotamarthi y H. Bellout. Soil carbon response to rising temperature. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1051236.
Texto completoFultz-Waters, Sydney. Introduction to Carbon Sensing in Soil. Office of Scientific and Technical Information (OSTI), mayo de 2022. http://dx.doi.org/10.2172/1869374.
Texto completoFancher, J. D. Carbon tetrachloride ERA soil-gas baseline monitoring. Office of Scientific and Technical Information (OSTI), julio de 1994. http://dx.doi.org/10.2172/10167614.
Texto completoZinke, P. J., A. G. Stangenberger, W. M. Post, W. R. Emanual y J. S. Olson. Worldwide organic soil carbon and nitrogen data. Office of Scientific and Technical Information (OSTI), septiembre de 1986. http://dx.doi.org/10.2172/543663.
Texto completoLarson, Steven, Ryan Busby, W. Andy Martin, Victor Medina, Peter Seman, Christopher Hiemstra, Umakant Mishra y Tom Larson. Sustainable carbon dioxide sequestration as soil carbon to achieve carbon neutral status for DoD lands. Engineer Research and Development Center (U.S.), noviembre de 2017. http://dx.doi.org/10.21079/11681/25406.
Texto completoAl-Kaisi, Mahdi y David Kwaw-Mensah. Long-term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/farmprogressreports-180814-1191.
Texto completoAl-Kaisi, Mahdi y David Kwaw-Mensah. Long-term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/farmprogressreports-180814-1239.
Texto completo