Literatura académica sobre el tema "Software defined radio receiver"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Software defined radio receiver".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Software defined radio receiver"
VULAVABETI, RAGHUNATH REDDY y REDDY K. RAVINDRA. "SOFTWARE DEFINED RADIO BASED BEACON RECEIVER". i-manager's Journal on Communication Engineering and Systems 8, n.º 3 (2019): 13. http://dx.doi.org/10.26634/jcs.8.3.16779.
Texto completoBagheri, R., A. Mirzaei, M. E. Heidari, S. Chehrazi, Minjae Lee, M. Mikhemar, W. K. Tang y A. A. Abidi. "Software-defined radio receiver: dream to reality". IEEE Communications Magazine 44, n.º 8 (agosto de 2006): 111–18. http://dx.doi.org/10.1109/mcom.2006.1678118.
Texto completoMagnuski, Mirosław, Maciej Surma y Dariusz Wójcik. "Broadband Input Block of Radio Receiver for Software-Defined Radio Devices". International Journal of Electronics and Telecommunications 60, n.º 3 (28 de octubre de 2014): 233–38. http://dx.doi.org/10.2478/eletel-2014-0029.
Texto completoJin Li, Yijun Luo y Mao Tian. "FM Stereo Receiver Based on Software-Defined Radio". International Journal of Digital Content Technology and its Applications 6, n.º 1 (31 de enero de 2012): 75–81. http://dx.doi.org/10.4156/jdcta.vol6.issue1.10.
Texto completoKumarin, A. A. y I. A. Kudryavtsev. "Software-defined Radio GNSS Receiver Signal Tracking Methods". IOP Conference Series: Materials Science and Engineering 984 (28 de noviembre de 2020): 012020. http://dx.doi.org/10.1088/1757-899x/984/1/012020.
Texto completoAbidi, Asad A. "The Path to the Software-Defined Radio Receiver". IEEE Journal of Solid-State Circuits 42, n.º 5 (mayo de 2007): 954–66. http://dx.doi.org/10.1109/jssc.2007.894307.
Texto completoSheybani, Ehsan y Giti Javidi. "Integrating Software Defined Radio with USRP". International Journal of Interdisciplinary Telecommunications and Networking 9, n.º 3 (julio de 2017): 1–9. http://dx.doi.org/10.4018/ijitn.2017070101.
Texto completoTaylor, Fred, Evan Gattis, Lucca Trapani, Dennis Akos, Sherman Lo, Todd Walter y Yu-Hsuan Chen. "Software Defined Radio for GNSS Radio Frequency Interference Localization". Sensors 24, n.º 1 (22 de diciembre de 2023): 72. http://dx.doi.org/10.3390/s24010072.
Texto completoMohammed, Asmaa, Heba Asem, Hatem Yousry y Abdelhalim Zekry. "Performance Evaluation for GSM Receiver Using Software Defined Radio". International Journal of Engineering Trends and Technology 30, n.º 7 (25 de diciembre de 2015): 333–40. http://dx.doi.org/10.14445/22315381/ijett-v30p262.
Texto completoRivet, F., Y. Deval, J. B. Begueret, D. Dallet, P. Cathelin y D. Belot. "A Disruptive Receiver Architecture Dedicated to Software-Defined Radio". IEEE Transactions on Circuits and Systems II: Express Briefs 55, n.º 4 (abril de 2008): 344–48. http://dx.doi.org/10.1109/tcsii.2008.919512.
Texto completoTesis sobre el tema "Software defined radio receiver"
Ödquist, Matilda. "Software-Defined Radio Receiver for IEEE 802.11n". Thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170724.
Texto completoDon, Michael L. "A Low-Cost Software-Defined Telemetry Receiver". International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596410.
Texto completoThe Army Research Laboratories has developed a PCM/FM telemetry receiver using a low-cost commercial software-defined radio (SDR). Whereas traditional radio systems are implemented in hardware, much of the functionality of software-defined radios is defined in software. This gives them the flexibility to accommodate military telemetry standards as well as other specialized functions. After a brief review of telecommunication theory, this paper describes the receiver implementation on a commercial SDR platform. Data rates up to 10 Mbs were obtained through the customization the SDR's field programmable gate array.
Sanfuentes, Juan L. "Software defined radio design for synchronization of 802.11A receiver". Thesis, Monterey, California. Naval Postgraduate School, 2007. http://hdl.handle.net/10945/3197.
Texto completoKumar, Sumit. "Architecture for simultaneous multi-standard software defined radio receiver". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS160.
Texto completoMotivated by the capabilities of the SDR, we theorize in this work a simultaneous multi-standard radio definition receiver (SMS-SDR). An SMS-SDR receiver will be able to "simultaneously" decode the information of several heterogeneous wireless standards using the same RF front end. Our target networks are random access networks operating in unlicensed bands. These standards operate without centralized coordination and are subject to serious interference between channels of the same type of technology (CT-CCI) because their operating frequency bands overlap. We are developing several new baseband signal processing algorithms to eliminate ICC from single and multi-antenna receivers. We chose the case of the use of narrow-band and broadband signals, paying particular attention to OFDM-based systems, OFDM being an essential physical layer technique of modern wireless standards such as IEEE families 802.11 and 4G. During development, we focus on methods that can operate autonomously in the receiver, that is, without any cooperation from the transmitter or base station. In this way, they are appropriate random access networks operating in unlicensed bands. In addition, the algorithms can be integrated into the existing infrastructure without any significant effort. Finally, our interference mitigation methods are used to develop decision trees that recommend the sequence of steps to mitigate interference between two heterogeneous signals. Finally, we validated our algorithms by implementing them using SDR
Warr, Paul. "Octave-band feedforward linearisation for software defined radio receiver amplifiers". Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340270.
Texto completoHolstensson, Oskar. "Study of Interferer Canceling Systems in a Software Defined Radio Receiver". Thesis, Linköpings universitet, Institutionen för systemteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92757.
Texto completoKoch, Mick V. "An Accessible Project 25 Receiver Using Low-Cost Software Defined Radio". Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1464007525.
Texto completoShetye, Kalpesh Anil. "Design and implementation of a software defined radio receiver for AM band". Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Theses/SHETYE_KALPESH_58.pdf.
Texto completoШвець, Валеріян Анатолійович, Volodymyr Kondratiuk, Svitlana Ilnytska y Oleksandr Kutsenko. "Radionavigation field monitoring in the landing area using software-defined radio receiver". Thesis, National Aviation University, 2018. http://er.nau.edu.ua/handle/NAU/36846.
Texto completoZhang, Chen. "An ECA-Based ZigBee Receiver". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/31516.
Texto completoMaster of Science
Libros sobre el tema "Software defined radio receiver"
Spiridon, Silvian. Toward 5G Software Defined Radio Receiver Front-Ends. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4.
Texto completoWepman, J. A. Implementation and testing of a software defined radio cellular base station receiver. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 2001.
Buscar texto completoHamkins, Jon y Marvin K. Simon, eds. Autonomous Software-Defined Radio Receivers for Deep Space Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470087803.
Texto completoTuttlebee, Walter, ed. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470846003.
Texto completoTuttlebee, Walter, ed. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470846011.
Texto completoTuttlebee, Walter, ed. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470846003.
Texto completoTuttlebee, Walter, ed. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470846011.
Texto completoTuttlebee, Walter H. W., ed. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2003. http://dx.doi.org/10.1002/0470867728.
Texto completoBard, John y Vincent J. Kovarik. Software Defined Radio. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470865200.
Texto completoGrayver, Eugene. Implementing Software Defined Radio. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9332-8.
Texto completoCapítulos de libros sobre el tema "Software defined radio receiver"
Benvenuto, N., G. A. Mian y F. Momola. "Digital Receiver Architecture for Multi-Standard Software Defined Radios". En Software Radio, 143–54. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0343-1_12.
Texto completoBorre, Kai. "The Aalborg GPS Software Defined Radio Receiver". En Satellite Communications and Navigation Systems, 169–83. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-47524-0_13.
Texto completoKulkarni, Jayshri, Chow-Yen-Desmond Sim, Jawad Yaseen Siddiqui, Anisha M. Apte, Ajay Kumar Poddar y Ulrich L. Rohde. "Software-Defined Radio, Receiver, and Transmitter Analysis". En Multifunctional and Multiband Planar Antennas for Emerging Wireless Applications, 307–72. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331018-9.
Texto completoRohde, Ulrich L. y Hans Zahnd. "Software Defined Radio, Receiver and Transmitter Analysis". En Fundamentals of RF and Microwave Techniques and Technologies, 1183–239. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-94100-0_12.
Texto completoNouri, Sajjad, Waqar Hussain, Diana Göhringer y Jari Nurmi. "Design and Implementation of IEEE 802.11a/g Receiver Blocks on a Coarse-Grained Reconfigurable Array". En Computing Platforms for Software-Defined Radio, 61–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49679-5_4.
Texto completoSpiridon, Silvian. "A System-Level Perspective of Modern Receiver Building Blocks". En Toward 5G Software Defined Radio Receiver Front-Ends, 71–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4_7.
Texto completoSpiridon, Silvian. "Overview of Wireless Communication in the Internet Age". En Toward 5G Software Defined Radio Receiver Front-Ends, 1–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4_1.
Texto completoSpiridon, Silvian. "Defining the Optimal Architecture". En Toward 5G Software Defined Radio Receiver Front-Ends, 13–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4_2.
Texto completoSpiridon, Silvian. "From High-Level Standard Requirements to Circuit-Level Electrical Specifications: A Standard-Independent Approach". En Toward 5G Software Defined Radio Receiver Front-Ends, 31–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4_3.
Texto completoSpiridon, Silvian. "Optimal Filter Partitioning". En Toward 5G Software Defined Radio Receiver Front-Ends, 45–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32759-4_4.
Texto completoActas de conferencias sobre el tema "Software defined radio receiver"
Shi, Elizabeth A., Mark Andrews, Caglar Yardim, Joel T. Johnson y Joe Vinci. "Software Defined Radio Based Drone Receiver Payload". En 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2021. http://dx.doi.org/10.23919/ursigass51995.2021.9560630.
Texto completoMohajer, M., A. Mohammadi y A. Abdipour. "A software defined radio direct conversion receiver". En 2005 European Microwave Conference. IEEE, 2005. http://dx.doi.org/10.1109/eumc.2005.1610316.
Texto completoBousseaud, Pierre, Emil Novakov y Jean-Michel Fournier. "A 130nm low power Software-Defined radio receiver". En 2012 Asia Pacific Microwave Conference (APMC). IEEE, 2012. http://dx.doi.org/10.1109/apmc.2012.6421812.
Texto completoKarabulut, Engin, Serdar Birecik y Sarp Erturk. "Implementation of sonobuoy receiver using software defined radio". En 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204449.
Texto completoPrata, Andre, Arnaldo S. R. Oliveira y Nuno Borges Carvalho. "FPGA-based all-digital Software Defined Radio receiver". En 2015 25th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2015. http://dx.doi.org/10.1109/fpl.2015.7293993.
Texto completoSchmidt-Knorreck, Carina, Daniel Knorreck y Raymond Knopp. "IEEE 802.11p Receiver Design for Software Defined Radio Platforms". En 2012 15th Euromicro Conference on Digital System Design (DSD). IEEE, 2012. http://dx.doi.org/10.1109/dsd.2012.76.
Texto completoSinha, Devarpita, Anish Kumar Verma y Sanjay Kumar. "Sample rate conversion technique for software defined radio receiver". En 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 2016. http://dx.doi.org/10.1109/isco.2016.7727029.
Texto completoSchreiber, Rudolf y Josef Bajer. "Software defined radio based receiver for TDOA positioning system". En 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, 2016. http://dx.doi.org/10.1109/dasc.2016.7778086.
Texto completoZhuang, Hui, Suiping Guo, Benkai Jia y Ning Xu. "Research on the Software-Defined Radio (SDR)-Radiosonde Receiver". En Wireless Communications. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.730-066.
Texto completoSosa, Angel Luis Zuriarrain, Roberto Alesii y Fortunato Santucci. "Cross-platform evaluation for Software Defined Radio GNSS receiver". En 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC). IEEE, 2022. http://dx.doi.org/10.23919/at-ap-rasc54737.2022.9814436.
Texto completoInformes sobre el tema "Software defined radio receiver"
Gowda, A. S. Photonic Software Defined Radio. Office of Scientific and Technical Information (OSTI), octubre de 2019. http://dx.doi.org/10.2172/1572630.
Texto completoPoyneer, L. Addressing qubits with a software-defined radio FPGA. Office of Scientific and Technical Information (OSTI), noviembre de 2020. http://dx.doi.org/10.2172/1722961.
Texto completoChannamallu, Aditya. Software Defined Radio based Modulated Scatterer Antenna Measurement. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.6331.
Texto completoWeingart, Troy B., Doug Sicker, Dirk Grunwald y Michael Neufeld. Adverbs and Adjectives: An Abstraction for Software Defined Radio. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2005. http://dx.doi.org/10.21236/ada430375.
Texto completoGrabner, Mitchel y Michael Don. A Real-Time Software-Defined Radio Two-Way Ranging Protocol. DEVCOM Army Research Laboratory, noviembre de 2023. http://dx.doi.org/10.21236/ad1214908.
Texto completoShribak, Dmitry, Alexander Heifetz y Xin Huang. Development of Software Defined Radio Protocol for Acoustic Communication on Pipes. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1480537.
Texto completoBrown, Alison K., Yan Lu y Janet Nordlie. Design and Test Results of a Software Defined Radio for Indoor Navigation. Fort Belvoir, VA: Defense Technical Information Center, enero de 2006. http://dx.doi.org/10.21236/ada444317.
Texto completoIlg, Mark. Framework For A Software-defined Global Positioning System (GPS) Receiver For Precision Munitions Applications. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada559589.
Texto completoLoehner, Henry, Alfonzo Orozco y Mark Hadley. Secure Software Defined Radio Project: Secure Wireless Systems for the Energy Sector (Briefing 6). Office of Scientific and Technical Information (OSTI), octubre de 2019. http://dx.doi.org/10.2172/1772564.
Texto completoLanoue, Matthew J. Next Generation Satellite Communications: Automated Doppler Shift Compensation of PSK-31 Via Software-Defined Radio. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2014. http://dx.doi.org/10.21236/ada604772.
Texto completo