Literatura académica sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery"
Rodriguez y Baena, Ferdinando y Brian Davies. "Robotic surgery: from autonomous systems to intelligent tools". Robotica 28, n.º 2 (27 de agosto de 2009): 163–70. http://dx.doi.org/10.1017/s0263574709990427.
Texto completoShademan, Azad, Ryan S. Decker, Justin D. Opfermann, Simon Leonard, Axel Krieger y Peter C. W. Kim. "Supervised autonomous robotic soft tissue surgery". Science Translational Medicine 8, n.º 337 (4 de mayo de 2016): 337ra64. http://dx.doi.org/10.1126/scitranslmed.aad9398.
Texto completoKonietschke, Rainer, Davide Zerbato, Rogério Richa, Andreas Tobergte, Philippe Poignet, Florian A. Fröhlich, Debora Botturi, Paolo Fiorini y Gerd Hirzinger. "Integration of New Features for Telerobotic Surgery into The Mirosurge System". Applied Bionics and Biomechanics 8, n.º 2 (2011): 253–65. http://dx.doi.org/10.1155/2011/635951.
Texto completoWu, Jie Ying, Peter Kazanzides y Mathias Unberath. "Leveraging vision and kinematics data to improve realism of biomechanic soft tissue simulation for robotic surgery". International Journal of Computer Assisted Radiology and Surgery 15, n.º 5 (22 de abril de 2020): 811–18. http://dx.doi.org/10.1007/s11548-020-02139-6.
Texto completoNigicser, Illés, Matthew Oldfield y Tamás Haidegger. "Magnetic Anchoring Considerations for Retractors Supporting Manual and Robot-Assisted Minimally Invasive Surgery". Machines 10, n.º 9 (29 de agosto de 2022): 745. http://dx.doi.org/10.3390/machines10090745.
Texto completoStewart, Lygia y Elizabeth De La Rosa. "Creation of a High Fidelity, Cost Effective, Real World Surgical Simulation for Surgical Education". Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 10, n.º 1 (junio de 2021): 147. http://dx.doi.org/10.1177/2327857921101081.
Texto completoCursi, Francesco, George P. Mylonas y Petar Kormushev. "Adaptive Kinematic Modelling for Multiobjective Control of a Redundant Surgical Robotic Tool". Robotics 9, n.º 3 (31 de agosto de 2020): 68. http://dx.doi.org/10.3390/robotics9030068.
Texto completoHaidegger, Tamás y József Sándor. "Robot-asszisztált Minimál Invazív Sebészeti Rendszerek a sebészeti adattudomány korában". Magyar Sebészet (Hungarian Journal of Surgery) 74, n.º 4 (25 de noviembre de 2021): 127–35. http://dx.doi.org/10.1556/1046.74.2021.4.5.
Texto completoBourdillon, Alexandra T., Animesh Garg, Hanjay Wang, Y. Joseph Woo, Marco Pavone y Jack Boyd. "Integration of Reinforcement Learning in a Virtual Robotic Surgical Simulation". Surgical Innovation, 3 de mayo de 2022, 155335062210952. http://dx.doi.org/10.1177/15533506221095298.
Texto completoSaeidi, H., J. D. Opfermann, M. Kam, S. Wei, S. Leonard, M. H. Hsieh, J. U. Kang y A. Krieger. "Autonomous robotic laparoscopic surgery for intestinal anastomosis". Science Robotics 7, n.º 62 (26 de enero de 2022). http://dx.doi.org/10.1126/scirobotics.abj2908.
Texto completoTesis sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery"
Tagliabue, Eleonora. "Patient-specific simulation for autonomous surgery". Doctoral thesis, 2022. http://hdl.handle.net/11562/1061936.
Texto completoTang, W. y Tao Ruan Wan. "Constraint-Based Soft Tissue Simulation for Virtual Surgical Training". 2014. http://hdl.handle.net/10454/11302.
Texto completoMost of surgical simulators employ a linear elastic model to simulate soft tissue material properties due to its computational efficiency and the simplicity. However, soft tissues often have elaborate nonlinearmaterial characteristics. Most prominently, soft tissues are soft and compliant to small strains, but after initial deformations they are very resistant to further deformations even under large forces. Such material characteristic is referred as the nonlinear material incompliant which is computationally expensive and numerically difficult to simulate. This paper presents a constraint-based finite-element algorithm to simulate the nonlinear incompliant tissue materials efficiently for interactive simulation applications such as virtual surgery. Firstly, the proposed algorithm models the material stiffness behavior of soft tissues with a set of 3-D strain limit constraints on deformation strain tensors. By enforcing a large number of geometric constraints to achieve the material stiffness, the algorithm reduces the task of solving stiff equations of motion with a general numerical solver to iteratively resolving a set of constraints with a nonlinear Gauss–Seidel iterative process. Secondly, as a Gauss–Seidel method processes constraints individually, in order to speed up the global convergence of the large constrained system, a multiresolution hierarchy structure is also used to accelerate the computation significantly, making interactive simulations possible at a high level of details . Finally, this paper also presents a simple-to-build data acquisition system to validate simulation results with ex vivo tissue measurements. An interactive virtual reality-based simulation system is also demonstrated.
Capítulos de libros sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery"
Tzemanaki, Antonia, Sanja Dogramadzi, Tony Pipe y Chris Melhuish. "Towards an Anthropomorphic Design of Minimally Invasive Instrumentation for Soft Tissue Robotic Surgery". En Advances in Autonomous Robotics, 455–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32527-4_56.
Texto completoActas de conferencias sobre el tema "Soft tissue simulation, Robotic surgery, Autonomous surgery"
Tagliabue, Eleonora, Ameya Pore, Diego Dall'Alba, Enrico Magnabosco, Marco Piccinelli y Paolo Fiorini. "Soft Tissue Simulation Environment to Learn Manipulation Tasks in Autonomous Robotic Surgery*". En 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341710.
Texto completoWeld, Alistair, Michael Dyck, Julian Klodmann, Giulio Anichini, Luke Dixon, Sophie Camp, Alin Albu-Schäffer y Stamatia Giannarou. "Collaborative Robotic Ultrasound Tissue Scanning for Surgical Resection Guidance in Neurosurgery". En The Hamlyn Symposium on Medical Robotics: "MedTech Reimagined". The Hamlyn Centre, Imperial College London London, UK, 2022. http://dx.doi.org/10.31256/hsmr2022.46.
Texto completo