Literatura académica sobre el tema "SM2RAIN"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "SM2RAIN".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "SM2RAIN"

1

Rahman, Shang, Shahid y Wen. "Performance Assessment of SM2RAIN-CCI and SM2RAIN-ASCAT Precipitation Products over Pakistan". Remote Sensing 11, n.º 17 (29 de agosto de 2019): 2040. http://dx.doi.org/10.3390/rs11172040.

Texto completo
Resumen
Accurate estimation of precipitation from satellite precipitation products (PPs) over the complex topography and diverse climate of Pakistan with limited rain gauges (RGs) is an arduous task. In the current study, we assessed the performance of two PPs estimated from soil moisture (SM) using the SM2RAIN algorithm, SM2RAIN-CCI and SM2RAIN-ASCAT, on the daily scale across Pakistan during the periods 2000–2015 and 2007–2015, respectively. Several statistical metrics, i.e., Bias, unbiased root mean square error (ubRMSE), Theil’s U, and the modified Kling–Gupta efficiency (KGE) score, and four categorical metrics, i.e., probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and Bias score, were used to evaluate these two PPs against 102 RGs observations across four distinct climate regions, i.e., glacial, humid, arid and hyper-arid regions. Total mean square error (MSE) is decomposed into systematic (MSEs) and random (MSEr) error components. Moreover, the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TRMM TMPA 3B42v7) was used to assess the performance of SM2RAIN-based products at 0.25° scale during 2007–2015. Results shows that SM2RAIN-based product highly underestimated precipitation in north-east and hydraulically developed areas of the humid region. Maximum underestimation for SM2RAIN-CCI and SM2RIAN-ASCAT were 58.04% and 42.36%, respectively. Precipitation was also underestimated in mountainous areas of glacial and humid regions with maximum underestimations of 43.16% and 34.60% for SM2RAIN-CCI. Precipitation was overestimated along the coast of Arabian Sea in the hyper-arid region with maximum overestimations for SM2RAIN-CCI (SM2RAIN-ASCAT) of 59.59% (52.35%). Higher ubRMSE was observed in the vicinity of hydraulically developed areas. Theil’s U depicted higher accuracy in the arid region with values of 0.23 (SM2RAIN-CCI) and 0.15 (SM2RAIN-ASCAT). Systematic error components have larger contribution than random error components. Overall, SM2RAIN-ASCAT dominates SM2RAIN-CCI across all climate regions, with average percentage improvements in bias (27.01% in humid, 5.94% in arid, and 6.05% in hyper-arid), ubRMSE (19.61% in humid, 20.16% in arid, and 25.56% in hyper-arid), Theil’s U (9.80% in humid, 28.80% in arid, and 26.83% in hyper-arid), MSEs (24.55% in humid, 13.83% in arid, and 8.22% in hyper-arid), MSEr (19.41% in humid, 29.20% in arid, and 24.14% in hyper-arid) and KGE score (5.26% in humid, 28.12% in arid, and 24.72% in hyper-arid). Higher uncertainties were depicted in heavy and intense precipitation seasons, i.e., monsoon and pre-monsoon. Average values of statistical metrics during monsoon season for SM2RAIN-CCI (SM2RAIN-ASCAT) were 20.90% (17.82%), 10.52 mm/day (8.61 mm/day), 0.47 (0.43), and 0.47 (0.55) for bias, ubRMSE, Theil’s U, and KGE score, respectively. TMPA outperformed SM2RAIN-based products across all climate regions. SM2RAIN-based datasets are recommended for agricultural water management, irrigation scheduling, flood simulation and early flood warning system (EFWS), drought monitoring, groundwater modeling, and rainwater harvesting, and vegetation and crop monitoring in plain areas of the arid region.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Asif, Muhammad, Muhammad Umer Nadeem, Muhammad Naveed Anjum, Bashir Ahmad, Gulakhmadov Manuchekhr, Muhammad Umer, Muhammad Hamza, Muhammad Mashood Javaid y Tie Liu. "Evaluation of Soil Moisture-Based Satellite Precipitation Products over Semi-Arid Climatic Region". Atmosphere 14, n.º 1 (20 de diciembre de 2022): 8. http://dx.doi.org/10.3390/atmos14010008.

Texto completo
Resumen
The ground validation of satellite-based precipitation products (SPPs) is very important for their hydroclimatic application. This study evaluated the performance assessment of four soil moisture-based SPPs (SM2Rain, SM2Rain- ASCAT, SM2Rain-CCI, and GPM-SM2Rain). All data of SPPs were compared with 64 weather stations in Pakistan from January 2005 to December 2020. All SPPs estimations were evaluated on daily, monthly, seasonal, and yearly scales, over the whole spatial domain, and at point-to-pixel scale. Widely used evaluation indices (root mean square error (RMSE), correlation coefficient (CC), bias, and relative bias (rBias)) along with categorical indices (false alarm ratio (FAR), probability of detection (POD), success ratio (SR), and critical success index (CSI) were evaluated for performance analysis. The results of our study signposted that: (1) On a monthly scale, all SPPs estimations were in better agreement with gauge estimations as compared to daily scales. Moreover, SM2Rain and GPM-SM2Rain products accurately traced the spatio-temporal variability with CC >0.7 and rBIAS within the acceptable range (±10) of the whole country. (2) On a seasonal scale (spring, summer, winter, and autumn), GPM-SM2Rain performed more satisfactorily as compared to all other SPPs. (3) All SPPs performed better at capturing light precipitation events, as indicated by the Probability Density Function (PDF); however, in the summer season, all SPPs displayed considerable over/underestimates with respect to PDF (%). Moreover, GPM-SM2RAIN beat all other SPPs in terms of probability of detection. Consequently, we suggest the daily and monthly use of GPM-SM2Rain and SM2Rain for hydro climate applications in a semi-arid climate zone (Pakistan).
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Paredes-Trejo, Franklin, Humberto Barbosa y Carlos A. C. dos Santos. "Evaluation of the Performance of SM2RAIN-Derived Rainfall Products over Brazil". Remote Sensing 11, n.º 9 (9 de mayo de 2019): 1113. http://dx.doi.org/10.3390/rs11091113.

Texto completo
Resumen
Microwave-based satellite soil moisture products enable an innovative way of estimating rainfall using soil moisture observations with a bottom-up approach based on the inversion of the soil water balance Equation (SM2RAIN). In this work, the SM2RAIN-CCI (SM2RAIN-ASCAT) rainfall data obtained from the inversion of the microwave-based satellite soil moisture (SM) observations derived from the European Space Agency (ESA) Climate Change Initiative (CCI) (from the Advanced SCATterometer (ASCAT) soil moisture data) were evaluated against in situ rainfall observations under different bioclimatic conditions in Brazil. The research V7 version of the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TRMM TMPA) was also used as a state-of-the-art rainfall product with an up-bottom approach. Comparisons were made at daily and 0.25° scales, during the time-span of 2007–2015. The SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA products showed relatively good Pearson correlation values (R) with the gauge-based observations, mainly in the Caatinga (CAAT) and Cerrado (CER) biomes (R median > 0.55). SM2RAIN-ASCAT largely underestimated rainfall across the country, particularly over the CAAT and CER biomes (bias median < −16.05%), while SM2RAIN-CCI is characterized by providing rainfall estimates with only a slight bias (bias median: −0.20%), and TRMM TMPA tended to overestimate the amount of rainfall (bias median: 7.82%). All products exhibited the highest values of unbiased root mean square error (ubRMSE) in winter (DJF) when heavy rainfall events tend to occur more frequently, whereas the lowest values are observed in summer (JJA) with light rainfall events. The SM2RAIN-based products showed larger contribution of systematic error components than random error components, while the opposite was observed for TRMM TMPA. In general, both SM2RAIN-based rainfall products can be effectively used for some operational purposes on a daily scale, such as water resources management and agriculture, whether the bias is previously adjusted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zbiri, Asmae, Azeddine Hachmi, Dominique Haesen y Fatima Ezzahrae El Alaoui-Faris. "New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands". Ekológia (Bratislava) 41, n.º 1 (1 de marzo de 2022): 90–100. http://dx.doi.org/10.2478/eko-2022-0010.

Texto completo
Resumen
Abstract Remotely sensed soil moisture products showed sensitivity to vegetation cover density and soil typology at regional dryland level. In these regions, drought monitoring is significantly performed using soil moisture index and rainfall data. Recently, rainfall and soil moisture observations have increasingly become available. This has hampered scientific progress as regards characterization of land surface processes not just in meteorology. The purpose of this study was to investigate the relationship between a newly developed precipitation dataset, SM2RAIN (Advanced SCATterometer (SM2RAIN-ASCAT), and NDVI (eMODIS-TERRA) in monitoring drought events over diverse rangeland regions of Morocco. Results indicated that the highest polynomial correlation coefficient and the lowest root mean square error (RMSE) between SM2RAIN-ASCAT and NDVI were found in a 10-year period from 2007 to 2017 in all rangelands (R = 0.81; RMSE = 0.05). This relationship was strong for degraded rangeland, where there were strong positive correlation coefficients for NDVI and SM2RAIN (R = 0.99). High correlations were found for sparse and moderate correlations for shrub rangeland (R = 0.82 and 0.61, respectively). The anomalies maps showed a very good similarity between SM2RAIN and Normalized Difference Vegetation Index (NDVI) data. The results revealed that the SM2RAIN-ASCAT and NDVI product could accurately predict drought events in arid and semi-arid rangelands.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Brocca, Luca, Paolo Filippucci, Sebastian Hahn, Luca Ciabatta, Christian Massari, Stefania Camici, Lothar Schüller, Bojan Bojkov y Wolfgang Wagner. "SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations". Earth System Science Data 11, n.º 4 (22 de octubre de 2019): 1583–601. http://dx.doi.org/10.5194/essd-11-1583-2019.

Texto completo
Resumen
Abstract. Long-term gridded precipitation products are crucial for several applications in hydrology, agriculture and climate sciences. Currently available precipitation products suffer from space and time inconsistency due to the non-uniform density of ground networks and the difficulties in merging multiple satellite sensors. The recent “bottom-up” approach that exploits satellite soil moisture observations for estimating rainfall through the SM2RAIN (Soil Moisture to Rain) algorithm is suited to build a consistent rainfall data record as a single polar orbiting satellite sensor is used. Here we exploit the Advanced SCATterometer (ASCAT) on board three Meteorological Operational (MetOp) satellites, launched in 2006, 2012, and 2018, as part of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System programme. The continuity of the scatterometer sensor is ensured until the mid-2040s through the MetOp Second Generation Programme. Therefore, by applying the SM2RAIN algorithm to ASCAT soil moisture observations, a long-term rainfall data record will be obtained, starting in 2007 and lasting until the mid-2040s. The paper describes the recent improvements in data pre-processing, SM2RAIN algorithm formulation, and data post-processing for obtaining the SM2RAIN–ASCAT quasi-global (only over land) daily rainfall data record at a 12.5 km spatial sampling from 2007 to 2018. The quality of the SM2RAIN–ASCAT data record is assessed on a regional scale through comparison with high-quality ground networks in Europe, the United States, India, and Australia. Moreover, an assessment on a global scale is provided by using the triple-collocation (TC) technique allowing us also to compare these data with the latest, fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), the Early Run version of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), and the gauge-based Global Precipitation Climatology Centre (GPCC) products. Results show that the SM2RAIN–ASCAT rainfall data record performs relatively well at both a regional and global scale, mainly in terms of root mean square error (RMSE) when compared to other products. Specifically, the SM2RAIN–ASCAT data record provides performance better than IMERG and GPCC in data-scarce regions of the world, such as Africa and South America. In these areas, we expect larger benefits in using SM2RAIN–ASCAT for hydrological and agricultural applications. The limitations of the SM2RAIN–ASCAT data record consist of the underestimation of peak rainfall events and the presence of spurious rainfall events due to high-frequency soil moisture fluctuations that might be corrected in the future with more advanced bias correction techniques. The SM2RAIN–ASCAT data record is freely available at https://doi.org/10.5281/zenodo.3405563 (Brocca et al., 2019) (recently extended to the end of August 2019).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ciabatta, Luca, Luca Brocca, Christian Massari, Tommaso Moramarco, Silvia Puca, Angelo Rinollo, Simone Gabellani y Wolfgang Wagner. "Integration of Satellite Soil Moisture and Rainfall Observations over the Italian Territory". Journal of Hydrometeorology 16, n.º 3 (27 de mayo de 2015): 1341–55. http://dx.doi.org/10.1175/jhm-d-14-0108.1.

Texto completo
Resumen
Abstract State-of-the-art rainfall products obtained by satellites are often the only way of measuring rainfall in remote areas of the world. However, it is well known that they may fail in properly reproducing the amount of precipitation reaching the ground, which is of paramount importance for hydrological applications. To address this issue, an integration between satellite rainfall and soil moisture SM products is proposed here by using an algorithm, SM2RAIN, which estimates rainfall from SM observations. A nudging scheme is used for integrating SM-derived and state-of-the-art rainfall products. Two satellite rainfall products are considered: H05 provided by EUMESAT and the real-time (3B42-RT) TMPA product provided by NASA. The rainfall dataset obtained through SM2RAIN, SM2RASC, considers SM retrievals from the Advanced Scatterometer (ASCAT). The rainfall datasets are compared with quality-checked daily rainfall observations throughout the Italian territory in the period 2010–13. In the validation period 2012–13, the integrated products show improved performances in terms of correlation with an increase in median values, for 5-day rainfall accumulations, of 26% (18%) when SM2RASC is integrated with the H05 (3B42-RT) product. Also, the median root-mean-square error of the integrated products is reduced by 18% and 17% with respect to H05 and 3B42-RT, respectively. The integration of the products is found to improve the threat score for medium–high rainfall accumulations. Since SM2RASC, H05, and 3B42-RT datasets are provided in near–real time, their integration might provide more reliable rainfall products for operational applications, for example, for flood and landslide early warning systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Anjum, Muhammad Naveed, Muhammad Irfan, Muhammad Waseem, Megersa Kebede Leta, Usama Muhammad Niazi, Saif ur Rahman, Abdulnoor Ghanim, Muhammad Ahsan Mukhtar y Muhammad Umer Nadeem. "Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 Rainfall Products over a Semi-Arid Subtropical Climatic Region". Water 14, n.º 2 (7 de enero de 2022): 147. http://dx.doi.org/10.3390/w14020147.

Texto completo
Resumen
This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in daily, monthly, seasonal, and annual rainfall estimates of SRPs at pixel and regional scales during 2010–2018 were examined. Several evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias), as well as categorical indices (Probability of Detection (POD), Critical Success Index (CSI), and False Alarm Ration (FAR)) were used to assess the performance of the SRPs. The following findings were found: (1) CHIRPS-2.0 and SM2RAIN-ASCAT products were capable of tracking the spatiotemporal variability of observed rainfall, (2) all SRPs had higher overall performances in the northwestern parts of the province than the other parts, (3) all SRP estimates were in better agreement with ground-based monthly observations than daily records, and (4) on the seasonal scale, CHIRPS-2.0 and SM2RAIN-ASCAT were better than PERSIANN-CCS and PERSIANN. In all seasons, CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PERSIANN-CCS and PERSIANN-CDR. Based on our findings, we recommend that hydrometeorological investigations in Pakistan’s Punjab Province employ monthly estimates of CHIRPS-2.0 and SM2RAIN-ASCAT products.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ciabatta, Luca, Christian Massari, Luca Brocca, Alexander Gruber, Christoph Reimer, Sebastian Hahn, Christoph Paulik, Wouter Dorigo, Richard Kidd y Wolfgang Wagner. "SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture". Earth System Science Data 10, n.º 1 (8 de febrero de 2018): 267–80. http://dx.doi.org/10.5194/essd-10-267-2018.

Texto completo
Resumen
Abstract. Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998–2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value < 10.34 mm over 5 days) and bias (median value < −14.44 %) during the evaluation period. The validation has been carried out at original resolution (0.25°) over Europe, Australia and five other areas worldwide to test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Filippucci, Paolo, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner y Angelica Tarpanelli. "High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study". Hydrology and Earth System Sciences 26, n.º 9 (12 de mayo de 2022): 2481–97. http://dx.doi.org/10.5194/hess-26-2481-2022.

Texto completo
Resumen
Abstract. The use of satellite sensors to infer rainfall measurements has become a widely used practice in recent years, but their spatial resolution usually exceeds 10 km, due to technological limitations. This poses an important constraint on its use for applications such as water resource management, index insurance evaluation or hydrological models, which require more and more detailed information. In this work, the algorithm SM2RAIN (Soil Moisture to Rain) for rainfall estimation is applied to two soil moisture products over the Po River basin: a high-resolution soil moisture product derived from Sentinel-1, named S1-RT1, characterized by 1 km spatial resolution (500 m spacing), and a 25 (12.5 km spacing) product derived from ASCAT, resampled to the same grid as S1-RT1. In order to overcome the need for calibration and to allow for its global application, a parameterized version of SM2RAIN algorithm was adopted along with the standard one. The capabilities in estimating rainfall of each obtained product were then compared, to assess both the parameterized SM2RAIN performances and the added value of Sentinel-1 high spatial resolution. The results show that good estimates of rainfall are obtainable from Sentinel-1 when considering aggregation time steps greater than 1 d, since the low temporal resolution of this sensor (from 1.5 to 4 d over Europe) prevents its application for infer daily rainfall. On average, the ASCAT-derived rainfall product performs better than S1-RT1, even if the performances are equally good when 30 d accumulated rainfall is considered (resulting in a mean Pearson correlation for the parameterized SM2RAIN product of 0.74 and 0.73, respectively). Notwithstanding this, the products obtained from Sentinel-1 outperform those from ASCAT in specific areas, like in valleys inside mountain regions and most of the plains, confirming the added value of the high-spatial-resolution information in obtaining spatially detailed rainfall. Finally, the performances of the parameterized products are similar to those obtained with the calibrated SM2RAIN algorithm, confirming the reliability of the parameterized algorithm for rainfall estimation in this area and fostering the possibility to apply SM2RAIN worldwide, even without the availability of a rainfall benchmark product.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Souto, Jefferson, Norma Beltrão y Ana Teodoro. "Performance of Remotely Sensed Soil Moisture for Temporal and Spatial Analysis of Rainfall over São Francisco River Basin, Brazil". Geosciences 9, n.º 3 (26 de marzo de 2019): 144. http://dx.doi.org/10.3390/geosciences9030144.

Texto completo
Resumen
Variability in precipitation patterns in the northeast and southeast regions of Brazil are complex, and the combined effects of the Tropical Atlantic, Pacific Niños, and local characteristics influence the precipitation rates. This study assesses the performance of multi-satellite precipitation product SM2RAIN-Climate Change Initiative (SM2RAIN-CCI) for the period of 1998–2015 at monthly scale. To accomplish this aim, various statistical analyses and comparison of multi-satellite precipitation analysis products with rain gauge stations are carried out. In addition, we used three values corresponding to extreme events: The total daily precipitation (PRCPTOT) and the number of consecutive dry/wet days (CDD/CWD). Results reveal that monthly rainfall data from SM2RAIN-CCI are compatible with surface observations, showing a seasonal pattern typical of the region. Data correlate well with observations for the selected stations (r ≥ 0.85) but tend to overestimate high rainfall values (>80 mm/month) in the rainy area. There is a significant decrease in rainfall to the indices, especially in PRCPTOT during the occurrence of tropical ocean–atmosphere interactions, reflecting CWD and CDD values. Moreover, our findings also indicate a relationship, at interannual timescales, between the state of El Niño Southern-Oscillation (ENSO) and Tropical Atlantic (TA) annual precipitation variability from 1998 to 2015. The SM2RAIN-CCI could be a useful alternative for rain-gauge precipitation data in the São Francisco River basin.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "SM2RAIN"

1

CIABATTA, LUCA. "Evaluation of satellite rainfall estimates for hydrologic and geo-hydrologic hazards prediction". Doctoral thesis, 2018. http://hdl.handle.net/2158/1129699.

Texto completo
Resumen
Satellite rainfall data are becoming available at high temporal and spatial resolution. The use of such data in ad-hoc developed modelling can extend hydrological applications to poorly instrumented areas. The use of remotely sensed information can provide also valuable insights about rainfall spatial variability, improving ground rainfall estimation. Despite the great availability of data, their use in hydrological practice is still very rare, with just few studies that have used such data for landslide hazard risk mitigation. In order to test the feasibility of using this kind of data for landslide prediction, a coupled hydrological-slope stability model has been developed and forced with remotely sensed information. Before that, several satellite rainfall products have been assessed through direct comparison with modelled and ground –based benchmarks and through hydrological validations, in order to highlight advantages and drawbacks of this source of information. Preliminary results showed that satellite rainfall data can be used with benefit in natural hazards mitigation, although the inherent errors related to the indirect nature of measurement have to be deeply assessed and corrected.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "SM2RAIN"

1

Dayal, Deen, Gagandeep Singh, Ashish Pandey y Praveen Kumar Gupta. "Performance Evaluation of SM2RAIN-ASCAT Rainfall Product Over an Agricultural Watershed of India". En Geospatial Technologies for Land and Water Resources Management, 223–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90479-1_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ciabatta, Luca, Stefania Camici, Christian Massari, Paolo Filippucci, Sebastian Hahn, Wolfgang Wagner y Luca Brocca. "Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture". En Advances in Global Change Research, 1013–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35798-6_27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "SM2RAIN"

1

Pradhan, Ankita y J. Indu. "Performance Assessment of GPM IMERG, SM2RAIN-CCI, SM2RAIN-ASCAT rainfall estimates over the Indian Subcontinent". En 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). IEEE, 2020. http://dx.doi.org/10.1109/icsidempc49020.2020.9299605.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía