Tesis sobre el tema "Slam LiDAR"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 32 mejores tesis para su investigación sobre el tema "Slam LiDAR".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Nava, Chocron Yoshua. "Visual-LiDAR SLAM with loop closure". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265532.
Texto completoSpjutspetsen inom Lidar-baserade teknik för fordonsodometri har den senaste tiden uppnått exceptionella nivåer av noggrannhet. Med det sagt har de metoder som presenterats fokuserat på att lösa lokaliseringsproblemet och därför gjort förenklande antaganden såsom att de sköter kartläggning av miljön löpande utan platsåterkoppling, och att de inte kan återlokalisera i tidigare kända miljöer. Således utvecklar vi i detta arbete ett system som kombinerar dessa noggranna lidarodometriska tekniker med algoritmer för platsigenkänning för att möjliggöra loopdetektion. Vi använder vitt tillgängliga dataset av körning i stadstrafik samt i utomhusområden för utveckling och utvärdering av systemet. Resultaten visar att platsåterkoppling förbättrar noggrannheten hos Lidar-baserade lokaliseringsmetoder och gör dem mer robusta, samt att man med hjälp av detektorer baserade på punktmolnssegmentering och visuella särdrag erhåller ett system som uppvisar mycket goda resultat under utvärderingsfasen.
Contreras, Samamé Luis Federico. "SLAM collaboratif dans des environnements extérieurs". Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0012/document.
Texto completoThis thesis proposes large-scale mapping model of urban and rural environments using 3D data acquired by several robots. The work contributes in two main ways to the research field of mapping. The first contribution is the creation of a new framework, CoMapping, which allows to generate 3D maps in a cooperative way. This framework applies to outdoor environments with a decentralized approach. The CoMapping's functionality includes the following elements: First of all, each robot builds a map of its environment in point cloud format.To do this, the mapping system was set up on computers dedicated to each vehicle, processing distance measurements from a 3D LiDAR moving in six degrees of freedom (6-DOF). Then, the robots share their local maps and merge the point clouds individually to improve their local map estimation. The second key contribution is the group of metrics that allow to analyze the merging and card sharing processes between robots. We present experimental results to validate the CoMapping framework with their respective metrics. All tests were carried out in urban outdoor environments on the surrounding campus of the École Centrale de Nantes as well as in rural areas
Dellenbach, Pierre. "Exploring LiDAR Odometries through Classical, Deep and Inertial perspectives". Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLM069.
Texto completo3D LiDARs have become increasingly popular in the past decade, notably motivated by the safety requirements of autonomous driving requiring new sensor modalities. Contrary to cameras, 3D LiDARs provide direct, and extremely precise 3D measurements of the environment. This has led to the development of many different mapping and Simultaneous Localization And Mapping (SLAM) solutions leveraging this new modality. These algorithms quickly performed much better than their camera-based counterparts, as evidenced by several open-source benchmarks. One critical component ofthese systems is LiDAR odometry. A LiDAR odometry is an algorithm estimating the trajectory of the sensor, given only the iterative integration of the LiDAR measurements. The focus of this work is on the topic of LiDAR Odometries. More precisely, we aim to push the boundaries of LiDAR odometries, both in terms of precision and performance.To achieve this, we first explore classical LiDAR odometries in depth, and propose two novel LiDAR odometries, in chapter 3. We show the strength, and limitations of such methods. Then, to address to improve them we first investigate Deep Learning for LiDAR odometries in chapter 4, notably focusing on end-to-end odometries. We show again the limitations of such approaches and finally investigate in chapter 5 fusing inertial and LiDAR measurements
Bruns, Christian. "Lidar-based Vehicle Localization in an Autonomous Valet Parking Scenario". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461236677.
Texto completoEkström, Joakim. "3D Imaging Using Photon Counting Lidar on a Moving Platform". Thesis, Linköpings universitet, Reglerteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153297.
Texto completoZhang, Erik. "Integration of IMU and Velodyne LiDAR sensor in an ICP-SLAM framework". Thesis, KTH, Optimeringslära och systemteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193653.
Texto completoLokalisering och kartläggning (SLAM) i en okänd miljö är ett viktigt steg för många autonoma system. Den föreslagna lösningen är inte beroende på att hitta nyckelpunkter eller nyckelobjekt. Till skillnad från många andra SLAM baserade metoder så arbetar denna metod med glesa punktmoln där 'generalized ICP' (GICP)algoritmen används för punktmolns registrering. I denna uppsats så föreslås en variant av GICP och undersöker, ifall en tröghetssensor (IMU) kan hjälpa till med SLAM-processen. LiDAR-data som har använts i denna uppsats har varit uppmätta från en Velodyne LiDAR monterat på en ryggsäck, en bil och på en UAV. Resultatet tyder på att IMU-data kan göra algoritmen robustare och från mätningar i stadsmiljö så visar det sig att IMU kan hjälpa till att minska vinkeldrift, vilket är det största felkällan för noggrannhet i det globala koordinat systemet.
Gonzalez, Cadenillas Clayder Alejandro. "An improved feature extractor for the lidar odometry and mapping algorithm". Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/171499.
Texto completoLa extracción de características es una tarea crítica en la localización y mapeo simultáneo o Simultaneous Localization and Mapping (SLAM) basado en características, que es uno de los problemas más importantes de la comunidad robótica. Un algoritmo que resuelve SLAM utilizando características basadas en LiDAR es el algoritmo LiDAR Odometry and Mapping (LOAM). Este algoritmo se considera actualmente como el mejor algoritmo SLAM según el Benchmark KITTI. El algoritmo LOAM resuelve el problema de SLAM a través de un enfoque de emparejamiento de características y su algoritmo de extracción de características detecta las características clasifican los puntos de una nube de puntos como planos o agudos. Esta clasificación resulta de una ecuación que define el nivel de suavidad para cada punto. Sin embargo, esta ecuación no considera el ruido de rango del sensor. Por lo tanto, si el ruido de rango del LiDAR es alto, el extractor de características de LOAM podría confundir los puntos planos y agudos, lo que provocaría que la tarea de emparejamiento de características falle. Esta tesis propone el reemplazo del algoritmo de extracción de características del LOAM original por el algoritmo Curvature Scale Space (CSS). La elección de este algoritmo se realizó después de estudiar varios extractores de características en la literatura. El algoritmo CSS puede mejorar potencialmente la tarea de extracción de características en entornos ruidosos debido a sus diversos niveles de suavizado Gaussiano. La sustitución del extractor de características original de LOAM por el algoritmo CSS se logró mediante la adaptación del algoritmo CSS al Velodyne VLP-16 3D LiDAR. El extractor de características de LOAM y el extractor de características de CSS se probaron y compararon con datos reales y simulados, incluido el dataset KITTI utilizando las métricas Optimal Sub-Pattern Assignment (OSPA) y Absolute Trajectory Error (ATE). Para todos estos datasets, el rendimiento de extracción de características de CSS fue mejor que el del algoritmo LOAM en términos de métricas OSPA y ATE.
Paiva, mendes Ellon. "Study on the Use of Vision and Laser Range Sensors with Graphical Models for the SLAM Problem". Thesis, Toulouse, INSA, 2017. http://www.theses.fr/2017ISAT0016/document.
Texto completoA strong requirement to deploy autonomous mobile robots is their capacity to localize themselves with a certain precision in relation to their environment. Localization exploits data gathered by sensors that either observe the inner states of the robot, like acceleration and speed, or the environment, like cameras and Light Detection And Ranging (LIDAR) sensors. The use of environment sensors has triggered the development of localization solutions that jointly estimate the robot position and the position of elements in the environment, referred to as Simultaneous Localization and Mapping (SLAM) approaches. To handle the noise inherent of the data coming from the sensors, SLAM solutions are implemented in a probabilistic framework. First developments were based on Extended Kalman Filters, while a more recent developments use probabilistic graphical models to model the estimation problem and solve it through optimization. This thesis exploits the latter approach to develop two distinct techniques for autonomous ground vehicles: oneusing monocular vision, the other one using LIDAR. The lack of depth information in camera images has fostered the use of specific landmark parametrizations that isolate the unknown depth in one variable, concentrating its large uncertainty into a single parameter. One of these parametrizations, named Parallax Angle Parametrization, was originally introduced in the context of the Bundle Adjustment problem, that processes all the gathered data in a single global optimization step. We present how to exploit this parametrization in an incremental graph-based SLAM approach in which robot motion measures are also incorporated. LIDAR sensors can be used to build odometry-like solutions for localization by sequentially registering the point clouds acquired along a robot trajectory. We define a graphical model layer on top of a LIDAR odometry layer, that uses the Iterative Closest Points (ICP) algorithm as registration technique. Reference frames are defined along the robot trajectory, and ICP results are used to build a pose graph, used to solve an optimization problem that enables the correction of the robot trajectory and the environment map upon loop closures. After an introduction to the theory of graphical models applied to SLAM problem, the manuscript depicts these two approaches. Simulated and experimental results illustrate the developments throughout the manuscript, using classic and in-house datasets
Chghaf, Mohammed. "Towards a Multimodal Loop Closure System for Real-Time Embedded SLAM Applications". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST133.
Texto completoMultimodal SLAM algorithms improve its robustness and accuracy in complex and dynamic environments. However, these improvements come at the cost of increased computational requirements. The systemic-level study of the SLAM problem is crucial to designing a practical, stable and versatile solution, adaptable to embedded and real-time systems. We have studied the various processing stages of the system in order to propose contributions to the multimodal loop closure level for SLAM applications, and its computational architecture. This study began with an in-depth analysis of the impact of multimodal information representation on loop closure accuracy and its influence on trajectory drift reduction. We developed a fusion method based on a similarity-guided particle filter, which was evaluated using various dataset. The results obtained showed an improvement in localization’s accuracy. We proposed a heterogeneous architecture model (CPU-GPU and CPU-FPGA) for inter-modal scene descriptor computation. This architecture was able to deliver superior performance in terms of processing time
Karlsson, Oskar. "Lidar-based SLAM : Investigation of environmental changes and use of road-edges for improved positioning". Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165288.
Texto completoSchubert, Jack. "Development of a ground robot for indoor SLAM using Low‐Cost LiDAR and remote LabVIEW HMI". Thesis, Schubert, Jack (2018) Development of a ground robot for indoor SLAM using Low‐Cost LiDAR and remote LabVIEW HMI. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/44801/.
Texto completoCorrea, Silva Joan Li Guisell y Sofia Jönsson. "Investigation of Increased Mapping Quality Generated by a Neural Network for Camera-LiDAR Sensor Fusion". Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297463.
Texto completoDenna studie undersökte kartläggningen i Simultaneous Localisation And Mapping (SLAM) problem, i kontexten av två sensorers felkällor. Sensorerna som användes var en Intel Realsense djupseende kamera samt en LiDAR fran RPlidar. Både kameror och LiDARs är vanliga sensorer i SLAM system, och båda har olika typer av felkällor. Kameror är typiskt känsliga för mycket starkt ljus, medan LiDARs har svårt med reflekterande ytor. Med detta som bakgrund har denna studie undersökt möjligheten att implementera ett neuralt nätverk för att detektera när varje sensor är utsatt för en felkälla (och därmed ger fel data). Nätverkets klassificering används sedan för att i varje tidssteg exkludera den sensors data som det är fel på för att förbättra kartläggningen. De qvantitativa resultaten visade ingen signifikant skillnad mellan kartorna genererade med nätverket och de utan nätverket. Dock visade den kvalitativa analysen att det finns vissa fördelar med att använda det neutrala nätverket. Manga av kamerans fel blev korrigerade när nätverket var implementerat, vilket ledde till mer korrekta kartor under kontinuerlig körning. Slutsatsen blev att ett nätverk kan bli tränat för att identifiera fel i datan, men att kameran drar mest nytta av det. Studien producerade även sekundara resultat som också redovisas. Slutligen rekommenderas optimering av nätverket, val av sensorer, samt uppdaterad algoritm för sensor fusionen som möjliga områden till fortsatt forskning inom området.
Holmqvist, Niclas. "HANDHELD LIDAR ODOMETRY ESTIMATION AND MAPPING SYSTEM". Thesis, Mälardalens högskola, Inbyggda system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-41137.
Texto completoPilch, Tomasz. "Simultalní lokalizace, mapování a vytváření modelu prostředí pro autonomní robotiku". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254449.
Texto completoSalem, Marwan. "Building an Efficient Occupancy Grid Map Based on Lidar Data Fusion for Autonomous driving Applications". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263098.
Texto completoModulen som har hand om både lokalisering och byggandet av karta är en av huvudorganen i ett system för autonom körning. Den beskriver bilens förmåga att skapa en modell av omgivningen och att hålla en position i förhållande till omgivningen. I detta examensarbete bidrar vi till forskningen inom autonom bilkörning med ett valideringskoncept genom att integrera SLAM-lösningar i kommersiella fordon, vilket förbättrar robustheten hos lokaliserings-kartbyggarmodulen. Det föreslagna systemet använder sig utav Bayesiansk statistik applicerat i ett ramverk som har hand om att skapa en karta, som består av ett rutnät som används för att beskriva ockuperingsgraden. För att estimera den bana som fordonet kommer att färdas använder ramverket RBPF(Rao-Blackwellized particle filter). Examensarbetet har genomförts hos Scania CV, där ett tungt fordon utrustat med flera lidarsensorer har använts. En lägre nivå av sensor fusion applicerades för de olika lidarsensorerna och en parallelliserad implementation av algoritmen implementerades på GPU. När algoritmen kördes mot data som ofta används av ”allmänheten” kan vi konstatera att den implementerade algoritmen ger ett väldigt mycket bättre resultat än ”scan-matchnings”-tekniken och visar på ett acceptabelt resultat i jämförelse med en annan högpresterande RBPFimplementation, vilken tillför några förbättringar på algoritmen. Prestandan av hela systemet utvärderas med ett antal egendesignade realistiska scenarion. Det föreslagna systemet visar på en tydlig förbättring av uppskattningen av körbanan och bidrar även med en exakt representation av omgivningen. Sensor Fusionen visar på en bättre och mer informativ representation än när man endast utgår från de individuella lidarsensorerna.
Gillsjö, David. "Moving object detection in urban environments". Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84734.
Texto completoNordin, Fredrik. "Terrain sensor for semi active suspension in CV90". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64434.
Texto completoLin, Ismael. "Combining dense short range sensors and sparse long range sensors for mapping". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223572.
Texto completoKartläggning är en av huvudkomponenterna för autonoma robotar, och består av att bygga en modell av miljön utifrån informationen som samlats in av olika sensorer över tid. Dessa kartor kommer att ha olika attribut beroende på vilken typ av sensor som används för rekonstruktionen. I denna avhandling är fokus på RGBD-kameror och LiDARs. Datan från kameror är kompakt men kan bara mäta korta sträckor och det är utmanande att konstruera storskaliga och konsistenta kartor. LiDARs är exakt motsatta, de ger gles data men kan mäta långa avstånd noggrant och stödjer därför storskalig kartering bättre. Avhandlingen presenterar en metod som använder båda typerna av sensorer i syfte att kombinera deras styrkor och minska svagheterna. Utvärderingen av systemet sker i en inomhusmiljö och med en autonom robot. Resultatet av avhandlingen visar en karta som är robust i stora miljöer och har tät information om omgivningen.
Manhed, Joar. "Investigating Simultaneous Localization and Mapping for an Automated Guided Vehicle". Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163075.
Texto completoNaghi, Nour. "Simultaneous Localization and Mapping Technologies". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17852/.
Texto completoSAMMARTANO, GIULIA. "Suitability Of 3D Dense Models For Rapid Mapping Strategies On Cultural Heritage Documentation And Conservation. Validation of metric and non-metric information extraction from integrated solutions". Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2703098.
Texto completoLandry, Michaël. "Développement d'une nouvelle méthode de calibrage des Systèmes LiDAR Mobiles (SLM) en laboratoire". Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27871.
Texto completoThe LiDAR scanner is an increasingly popular technology for engineers, land surveyors, architects and other professionals who use 3D modeling as part of their work. The integration of this sensor with a navigation system (IMU + GNSS) makes it possible to form a Mobile LiDAR System (MLS). MLSs were originally developed for airborne vehicles, but were more recently adapted to land vehicles. All MLS observations are combined to form a point cloud by direct georeferencing. In order to limit the propagation of systematic errors due to the assembly of these sensors, it is necessary to properly calibrate the system. The calibration of an MLS involves the determination of the lever arms and boresight angles that correspond to the distance and orientation between the LiDAR and the IMU. The manufacturer usually provides values for these elements, but it is necessary to fine-tune these values that are unique to each system. Since it is impossible to accurately determine boresight angles with manual measurements, field observations are used to estimate them (in situ calibration). A problem with in situ calibration is that GNSS observations introduce errors of several centimeters into the solution, which is harmful for a proper calibration. In order to eliminate the need for GNSS observations, alternative methods of calibration are required. The aim of this research is to set up a procedure for the collection and processing of data acquired by an MLS in a laboratory in order to develop a calibration method free of GNSS positioning errors. This calibration method should allow estimation of the boresight angles and the lever arms of an MLS with the instruments and infrastructures inside the metrology laboratory of Laval University.
Silva, Paulo Rúben Alves. "Optimal Wheelchair Multi-LiDAR Placement for Indoor SLAM". Master's thesis, 2021. https://hdl.handle.net/10216/135766.
Texto completoSilva, Paulo Rúben Alves. "Optimal Wheelchair Multi-LiDAR Placement for Indoor SLAM". Dissertação, 2021. https://hdl.handle.net/10216/135766.
Texto completoLeal, Pedro Miguel Sousa. "Navigation solutions for autonomous mobile robots using lidar". Master's thesis, 2021. http://hdl.handle.net/10316/96100.
Texto completoA área da robótica tem feito avanços monumentais e continua a fazê-lo. Durante décadas, robôs têm sido usados para realizar trabalho altamente especializado dentro do mundo industrial. Hoje em dia, enquanto os desenvolvimentos relativos a soluções autónomas continuam a materializar-se, esta tecnologia está a quebrar as fronteiras do mundo industrial e começam a ver-se robôs no nosso dia-a-dia. Desde carros autónomos a robôs de limpeza, a nossa interação com esta tecnologia está a tornar-se comum. Localização, mapeamento e planeamento de rota são conceitos importantes em robótica, e em sistemas de navegação. Executar localização e mapeamento em simultâneo, denominado de SLAM, é uma tarefa incrivelmente complexa, e, em aplicações em que há pessoas no local, estes sistemas têm de ser altamente robustos. A empresa Active Space Technologies está a explorar soluções para robôs móveis autônomos (AMRs) e esta dissertação pretende executar uma implementação baseada em open-source de um sistema de navegação, incluindo SLAM e planeamento de rota. Adicionalmente, um algoritmo de detecção de objectos (baseado em DeepLab) é integrado no sistema juntamente com outras funcionalidades.Mais tarde, uma avaliação de seis soluções (SLAM Toolbox, Cartographer, RTAB-Map, HectorSLAM, Gmapping e LOAM) para a componente SLAM foi feita num ambiente real com dois sensores diferentes: o Intel Realsense L515 e o Velodyne VLP-16. Os resultados demonstram que ambos conseguem efectuar SLAM, sendo que o VLP-16 demonstrou excelentes resultados enquanto que o L515 necessitou de uma fonte robusta de odometria externa.Finalmente, as soluções relativas à remoção de ruido detectado pela L515 em algumas circunstâncias (como uma fonte de luzes directa), e a segmentação de pessoas usando o algoritmo de detecção de objectos foram demonstradas.
The field of robotics has made monumental advancements and continues to do so. For decades, robots have been used for highly specialized work within the industrial world. %in recent Nowadays, as developments regarding autonomous solutions continue to materialize, this technology is breaking the industrial boundaries and robots are starting to be seen in our daily lives. From self-driving cars to cleaning robots, our interaction with this technology is slowly becoming common.Localization, mapping and path planning are major concepts in robotics, and any navigation system. Performing the first two simultaneously, known as SLAM, is an incredibly complex task, and when considering applications where there are people in the vicinity, these systems must be highly reliable.The company Active Space Technologies is exploring solutions regarding autonomous mobile robots (AMRs) and this dissertation aims to come up with an open-source implementation of a navigation system, including SLAM and path planning. Additionally, an object detection algorithm (using DeepLab) is integrated into the system as well as several other features. Afterwards, an evaluation of six solutions (SLAM Toolbox, Cartographer, RTAB-Map, HectorSLAM, Gmapping and LOAM) for the SLAM component is carried out in a real world setting with two separate sensors: the Intel RealSense L515 lidar camera and the Velodyne VLP-16. The results reveal that both can effectively perform SLAM, with the VLP-16 showing excellent results while the L515 requires robust external odometry.Lastly, solutions to remove systemic noise detected in the scans of the L515 under certain circumstances (such as direct light), as well as segmentation of people using the object detection algorithm are demonstrated.
Ma, Zeyu. "SLAM research for port AGV based on 2D LIDAR". Master's thesis, 2019. http://hdl.handle.net/10071/20314.
Texto completoCom o aumento do comércio internacional, o transbordo de mercadorias em portos internacionais de contentores é muito movimentado. O AGV (“Automated Guided Vehicle”) foi usado como uma nova geração de equipamentos para transporte horizontal de contentores de forma automatizada. O AGV é um veículo não tripulado automatizado que pode funcionar 24 horas por dia, aumentando a produtividade e reduzindo os custos de mão-de-obra em comparação com o uso de camiões porta-contentores. A capacidade de obter informações sobre o ambiente circundante é um pré-requisito para o AGV concluir automaticamente tarefas na área portuária. Atualmente, o método de AGV baseado no posicionamento e navegação de etiquetas RFID apresenta um problema de custo excessivo. Nesta dissertação foi realizada uma pesquisa sobre a aplicação da tecnologia LIDAR de localização e mapeamento simultâneo (SLAM) num AGV. Uma plataforma de teste móvel baseada num telémetro a laser é desenvolvida para examinar o ambiente em redor em 360 graus (distância e ângulo), centrado no LIDAR, e fazer upload da informação para uma base de dados em tempo real para gerar um mapa do ambiente em redor. Uma estratégia de prevenção de obstáculos foi também desenvolvida com base nas informações adquiridas. A eficácia da plataforma foi verificada através da realização de testes com vários cenários e obstáculos. Por fim, com base na primeira plataforma, uma outra plataforma experimental com codificador e sensor IMU foi também desenvolvida. Nesta plataforma, a funcionalidade do SLAM é ativada pelo algoritmo GMapping e pela instalação do codificador e do sensor IMU. Com base no estabelecimento do ambiente circundante SLAM, foram realizadas as funções de planeamento de trajetória e prevenção de obstáculos pela plataforma.
ChenLei y 雷晨. "Reconstructing Environment Model with SLAM on UV-LiDAR System". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/14620692565643685598.
Texto completo國立成功大學
工程科學系
104
As UV researches and marketing have delivered an explosive growth in the recent decades, more and more demands have been raised by users. A number of developments and researches of sensors, peripherals, and ability for UVs have been prompted to solve a variety of problems and missions for fulfilling these demands. The most common one among these desired abilities mentioned above is the “vision”. The proposed system of this study first collects odometry data with LiDARs, which is mounted on a rotatory platform, then the data are collected and gathered into a map by an embedded device with SLAM package, also, the pose estimation of LiDARs is finished at the same time. Finally, these information of pose and map are published via Wi-Fi. With this system, UVs are able to know its orientation and “see” the surroundings without the aid of IMU, GPS and other sensors, and give an real-time information to the user to know the situation of UV at the same time.
Li-HsinChen y 陳立昕. "Development of SLAM and Loop Closure Algorithm Based on 2D LiDAR". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/u5c535.
Texto completoSarmento, Luís Pedro Esteves. "Navegação assistida e semi-autónoma da plataforma ROBONUC". Master's thesis, 2018. http://hdl.handle.net/10773/29466.
Texto completoMobile manipulation is a field with increasing importance in the industry which allows to execute complex tasks in dynamic environment. The current dissertation is inserted in the ROBONUC project which is composed by a mobile platform and a FANUC manipulator. The objective of this work is to implement a remote control system on the platform in such a way that allows it to navigate with enough autonomy to correct the trajectory imposed by the user in order to avoid a collision. The work is being developed in a modular structured environment called Robotic Operating System (ROS). This software allows to integrate third party programs as well as the distribution of multiple processes in different machines. The first task consisted of the implementation of the odometry or in other words, the calculation of the distance travelled by the platform using the information provided by the wheel encoders. HectorSLAM was introduced, an open source program developed in ROS, that allows to reconstruct the map of the involving environment using the Hokuyo laser installed on the platform. To ensure safety, several collision risk areas were defined that are variable in size depending on the platform's velocity. There is the existence of collision risk if one of the two Hokuyo lasers on the platform detects an objective in the risk area. An open source ROS program that allows a safely autonomous navigation was implemented in the platform. In case that a rick of collision is detected the autonomous mode is activated allows to avoid the obstacle. The execution of experimental tests was essencial to calibrate the odometry, as well as adjusting the risk areas.
Mestrado em Engenharia Mecânica
"Modeling and Control for Vision Based Rear Wheel Drive Robot and Solving Indoor SLAM Problem Using LIDAR". Master's thesis, 2016. http://hdl.handle.net/2286/R.I.40236.
Texto completoDissertation/Thesis
Defense Presentation
Masters Thesis Electrical Engineering 2016
Betrabet, Siddhant S. "Data Acquisition and Processing Pipeline for E-Scooter Tracking Using 3d Lidar and Multi-Camera Setup". Thesis, 2020. http://hdl.handle.net/1805/24776.
Texto completoAnalyzing behaviors of objects on the road is a complex task that requires data from various sensors and their fusion to recreate the movement of objects with a high degree of accuracy. A data collection and processing system are thus needed to track the objects accurately in order to make an accurate and clear map of the trajectories of objects relative to various coordinate frame(s) of interest in the map. Detection and tracking moving objects (DATMO) and Simultaneous localization and mapping (SLAM) are the tasks that needs to be achieved in conjunction to create a clear map of the road comprising of the moving and static objects. These computational problems are commonly solved and used to aid scenario reconstruction for the objects of interest. The tracking of objects can be done in various ways, utilizing sensors such as monocular or stereo cameras, Light Detection and Ranging (LIDAR) sensors as well as Inertial Navigation systems (INS) systems. One relatively common method for solving DATMO and SLAM involves utilizing a 3D LIDAR with multiple monocular cameras in conjunction with an inertial measurement unit (IMU) allows for redundancies to maintain object classification and tracking with the help of sensor fusion in cases when sensor specific traditional algorithms prove to be ineffectual when either sensor falls short due to their limitations. The usage of the IMU and sensor fusion methods relatively eliminates the need for having an expensive INS rig. Fusion of these sensors allows for more effectual tracking to utilize the maximum potential of each sensor while allowing for methods to increase perceptional accuracy. The focus of this thesis will be the dock-less e-scooter and the primary goal will be to track its movements effectively and accurately with respect to cars on the road and the world. Since it is relatively more common to observe a car on the road than e-scooters, we propose a data collection system that can be built on top of an e-scooter and an offline processing pipeline that can be used to collect data in order to understand the behaviors of the e-scooters themselves. In this thesis, we plan to explore a data collection system involving a 3D LIDAR sensor and multiple monocular cameras and an IMU on an e-scooter as well as an offline method for processing the data to generate data to aid scenario reconstruction.
Muresan, Alexandru Camil. "Analysis and Definition of the BAT-ME (BATonomous Moon cave Explorer) Mission". Thesis, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247507.
Texto completo