Índice
Literatura académica sobre el tema "Sistemi di monitoraggio delle cure"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Sistemi di monitoraggio delle cure".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Sistemi di monitoraggio delle cure"
Farilla, Cosima, Sante Minerba, Salvatore Scorzafave, Giulia Stola, Vito Guerra y Gregorio Colacicco. "La resilienza del sistema cardiologico nella pandemia SARS-CoV-2 e le proposte riorganizzative nella ASL Taranto". CARDIOLOGIA AMBULATORIALE 30, n.º 4 (22 de marzo de 2022): 10–238. http://dx.doi.org/10.17473/1971-6818-2021-4-4.
Texto completoMastorakis, Konstantinos, Massimo Continisio, Maria Francesca Siotto, Luca Navarini, Franco Carnevale, Mary Ellen Mac Donald y Claudia Navarini. "La percezione degli operatori sanitari sulle cure palliative come mezzo per promuovere la qualità di vita dei pazienti e prevenire le richieste eutanasich / Healthcare workers’ perception of palliative care as a means to foster patients' quality of life and to prevent euthanasia requests*". Medicina e Morale 68, n.º 1 (10 de abril de 2019): 25–39. http://dx.doi.org/10.4081/mem.2019.565.
Texto completoPiazza, Antonella. "Community mental health service's monitoring by the local informative system. The results of first year implementation". Epidemiologia e Psichiatria Sociale 5, n.º 1 (abril de 1996): 46–58. http://dx.doi.org/10.1017/s1121189x00003936.
Texto completoSoriente, Lucia, Silvio Cigolari, Alberto Gigantino, Chiara Aliberti, Pasquale Ardovino, Paola Adinolfi y Rocco Palumbo. "La riorganizzazione delle prestazioni sanitarie in ottica di appropriatezza: l'esperienza dell'AOU "San Giovanni di Dio e Ruggi d'Aragona" nella gestione del DRG 127 - Insufficienza cardiaca e shock". MECOSAN, n.º 115 (enero de 2021): 7–28. http://dx.doi.org/10.3280/mesa2020-115002.
Texto completoMunk-Jørgensen, Povl. "Perspectives for psychiatric epidemiology: are we measuring the right things?" Epidemiologia e Psichiatria Sociale 5, n.º 3 (diciembre de 1996): 190–97. http://dx.doi.org/10.1017/s1121189x00004176.
Texto completoDonato, Fabio. "I sistemi di monitoraggio delle performance nelle Knowledge Innovation Communities europee". MANAGEMENT CONTROL, n.º 1 (marzo de 2022): 45–58. http://dx.doi.org/10.3280/maco2022-001004.
Texto completoAntonio Gariboldi y Antonella Pugnaghi. "Valutazione come dialogo". IUL Research 2, n.º 4 (20 de diciembre de 2021): 308–21. http://dx.doi.org/10.57568/iulres.v2i4.166.
Texto completoCarè, Alessandra. "Medicina di genere: normativa e rilevanza nella ricerca biomedica". CARDIOLOGIA AMBULATORIALE 30, n.º 1 (31 de mayo de 2022): 3–5. http://dx.doi.org/10.17473/1971-6818-2022-1-1.
Texto completoFerlito, Rosaria y Rosario Faraci. "Sostenibilità e sistemi di Corporate Governance delle società benefit: il". CORPORATE GOVERNANCE AND RESEARCH & DEVELOPMENT STUDIES, n.º 2 (enero de 2022): 45–64. http://dx.doi.org/10.3280/cgrds2-2021oa12550.
Texto completoRita Acone, Maria. "Dal profilo di rischio del lavoratore al profilo di rischio della persona: un metodo per la promozione della salute". PNEI REVIEW, n.º 2 (noviembre de 2021): 78–97. http://dx.doi.org/10.3280/pnei2021-002007.
Texto completoTesis sobre el tema "Sistemi di monitoraggio delle cure"
Pitarresi, Salvatore. "Metodologia per la costruzione delle curve di consumo idrico a partire dai dati di monitoraggio. Applicazione alla rete idrica di Rapallo". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Buscar texto completoCatani, Ludovico. "Sistemi sensoriali intelligenti per il monitoraggio del traffico veicolare". Doctoral thesis, Università Politecnica delle Marche, 2012. http://hdl.handle.net/11566/242041.
Texto completoIn recent years (because of the increase in the number of registered vehicles and the growing dissatisfaction with public transport services) traffic congestion problem has been becoming source of discomfort for the community. Local governments are often unable to contain the most critical situations: variables involved are many and too often entrust on common sense rather than cope the problem with scientific approach. The present study was aimed to define the tools and a working methodology that can support experts for choices concerning road networks optimization. Three types of setting were studied : an unattended parking, a bus station and a road network. The set of solutions designed to manage them are conceived to be independent modules. They constitute a complete collection of tools for the road traffic problem treatment. The preferred technology to managing the matter has been computer vision, which offers certain gains: it uses as input data from cameras, which are typically easy to install (often already installed for other purposes such as security surveillance) and are less expensive than other monitoring solutions; it does not require installation of vehicle devices which is an undesirable activity (it is a source of discomfort for the users) and is not generally possible; assuming good lighting, it is extremely accurate to monitoring moving vehicles which are characterized by large dimensions with known and fixed shapes. Additional information comes from local public transport GSP tracking that are made available thanks to the company PluService s.r.l. After the data collection phase we have used a dedicated traffic flow network simulator to optimize the traffic flow and analyse the methods to solve its problems.
CAVALAGLIO, CAMARGO MOLANO JACOPO. "Sviluppo di una struttura di manutenzione basata sul monitoraggio delle condizioni per Sistemi a Carrelli Indipendenti". Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1200061.
Texto completoThe objective of this work is the condition monitoring of Independent Carts System with particular attention to bearings. The Independent Cart Conveyor System is a promising technology that could replace rotary driven chains and belts in the field of automatic machines. This system combines the benefits of servomotors with the advantages of linear motors. It consists of a close path made up of modular linear motors having a curved or a straight shape that control a fleet of carts independently. Each cart is placed along the motors and it is connected, through bearings, to a rail set on the motors themselves. A possible problem can rise with the use of this technology: with the demand of a high production rate, the number of movers necessary in the machine increases and consequently even the number of bearings increases. In this way the high number of rolling bearings reduces the Mean Time Before Failure (MTBF) of the whole machine, but at the same time, thanks to the independent control and the independent monitoring of each cart, it is possible to implement condition monitoring strategies for each cart. The condition monitoring of these elements is challenging for the non-stationary working conditions of variable load and speed profiles. The thesis deals with the problem of the development of a condition monitoring framework for this system from different points of view. About hardware, a new technique for the synchronization between PLCs of different vendors used for the control of this system has been developed. Moreover, bearing stiffness has been evaluated through experimental campaigns and advance computational methods. In order to get a 360-degree view of the possible solutions of this problem, data-driven and model-based condition monitoring techniques have been applied. As regards data-driven, machine learning techniques for fault detection have been used on the basis of an experimental campaign on a specific machine application, as well as a new feature for the prediction of bearing faults has been studied. As regards model-based, a model of the vibration signals produced by the carts with an arbitrary motion profile has been carried out. Moreover, the whole dynamics of the system has been taken into account by means of a multibody modelling of the cart, the bearings and the rail. Both models consider the variable motion profile, the shape of the conveyor path, the mechanical design of the cart, the load variation and the type of fault on the groove ball bearings. The models are scalable and modular in order to test different configurations of the system with different work parameters and both models have been validated by means of the comparison between the simulation results and the system variables recorded during experimental campaigns.
WANG, Benyou. "Monitoraggio ed esplorazione dei contenuti dinamici utilizzando gli spazi vettoriali". Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3445087.
Texto completoIn modern Natural Language Processing (NLP) and Information Retrieval (IR), individual words are typically embedded in vector space, called `word vectors' or `word embedding', to enable differentiable optimization in neural networks. This leads to a new NLP paradigm that could deal with individual words in neural networks. The first issue of the above paradigm is that components in neural networks (like word vectors and hidden states) usually do not convey any concrete physical meaning. One typical way is to use probabilities as well-constrained quantities to better understand neural network components. The challenge of traditional probability theory is that it cannot treat words as atomic discrete events since words are embedded as dense vectors that are not necessarily mutually orthogonal. This thesis proposes a novel framework based on Quantum Probability Theory (QPT) that defines probability axioms in vector space, to probabilistically ground word representation, semantic composition, and semantic abstraction in a unified space. Another issue of the paradigm is that the inductive bias of learning word vectors relies on only the distributional hypothesis: \textit{linguistic items with similar distributions have similar meanings}, while other aspects are usually ignored. This thesis focuses on one of the most nontrivial aspects, namely the spatially or temporally sequential aspect of words. The spatially sequential aspect refers to capture the spatial position of words in any bag-of-words document encoders, while the temporally sequential aspect refers to mine the time-specific word meaning in the scenario when word meanings may evolve with time. Interestingly, the complex-valued word embedding (with amplitude terms and phase terms), which is induced from QPT, could be naturally used to model sequence (both for spacial sequence and temporal sequence) by directly encoding sequential order in phase terms. The benefit is that the rotation nature of phases in waves makes sequential encoding being always bounded no matter how long the length of the sequence/dynamics is. Furthermore, a side effect of the thesis is to bridge the gap between \textit{complex-valued word embeddings} and \textit{sinusoidal position embedding}; it therefore reinterprets commonly-used yet `magic' sinusoidal position embedding in a principled way: sinusoidal position embedding is a real-valued variant of the proposed complex-valued word embeddings. Beyond the spatial dimension, the thesis also explores sinusoidal embeddings in temporally-sequential dimension, called `Word2Fun', for the temporal evolution of words. Word2Fun is proved to be able to approximate any continuous word meaning evolution. The thesis implements the QPT framework with 1) a Quantum Probability Driven neural Network (QPDN) for document modeling that achieves comparable performance with SOTA approaches in text classification benchmarks; and 2) a further extension for text matching, called `complex-valued network for matching' (CNM) , that achieves comparable performance with SOTA approaches in question answering (a typical matching task) benchmarks. This additionally shows the potential to use complex-valued word embedding in general document representation. For the complex-valued word embedding in sequential modeling, the empirical study also evidences the superiority of the `complex-valued word embedding' in spatial sequence modeling and Word2Fun in temporal sequence modeling.
MAURIZI, LORENZO. "Ricerca e sviluppo di un sistema di telemedicina per il monitoraggio remoto del rischio embolico nei subacquei e delle fluttuazioni motorie nella malattia di Parkinson". Doctoral thesis, Università Politecnica delle Marche, 2018. http://hdl.handle.net/11566/252591.
Texto completoThe research topic is based on the study of ICT solutions for the remote monitoring of physiological parameters, both on people with motor deficits and on healthy people in sports and non-sports activities. The design of video-conferencing systems, based on WebRTC technology, allows each user to communicate with the reference physician and send reports provided by custom biomedical devices. In the first phase, the peer-to-peer communication system was implemented between client browsers, also able, in addition to realizing the normal video / conference, to send the data acquired from biomedical sensors. The first application context, based on the WebRTC system, was provided in collaboration with the DAN, "Divers Alert Network", a worldwide organization that has been operating for years in divers prevention and safety during their diving campaigns. The aim was to realize devices able to analyze echo Doppler audio and identify in real-time the number of gaseous bubbles trapped in the veins and the relative degree of risk and associated Spencer level. The devices can send the generated reports, through the peer-to-peer system implemented to an emergency response center, where an operator, from a quick analysis of the received report, can determine the type and timing of intervention on the diver. Subsequently, the study moved onto subjects affected by motor deficits such as tremors, freezing and fluctuations, due to the presence of Parkinson's disease. Starting from raw data acquired from inertial sensors, data fusion algorithms has been implemented for detecting, in a completely automatic way, manifestations of Parkinson's symptoms. Appropriate GUIs allow to generate reports and send them, with WebRTC technology, to the medical team, which is able to customize the drug therapy in relation to the manifestations and the progress of the disease itself.
PAOLETTI, MICHELE. "Studio e sviluppo di sistemi per il monitoraggio ambientale e della persona basati su Smart Objects per Internet Of Things". Doctoral thesis, Università Politecnica delle Marche, 2022. https://hdl.handle.net/11566/295526.
Texto completoThe research activity focused on environmental and human monitoring systems. As regards environmental monitoring, Smart Objects have been studied and developed for the Internet of Things capable of creating widespread networks of sensors to be used in seismic monitoring for the purpose of Earthquake Early Warning. The goal was to analyze and compare the performance of a set of low-cost accelerometer sensors in order to increase the density of the monitoring network and thus increase the efficiency of early warning in case of earthquakes. Still, with a view to creating Early Warning Systems, it was studied how to create a data acquisition and analysis infrastructure for rapid warning in the event of floods with the aim of developing a platform capable of acquiring sensor data distributed throughout the territory, process the information collected by civil protection volunteers and automate the processes of modeling the stage-discharges curves for estimating the discharges of rivers. In this way, at each level value recorded by the hydrometric sensors, the corresponding estimate of the flow rate can be obtained without having to go to measure it every time. The study of issues related to the development of human activity monitoring systems, based on inertial units, has led to the evaluation of the use of these sensors in biomedical applications. In this context, a Wireless Body Sensor Network was developed consisting of an inertial unit for identifying the flexion angle of the back and sensors for the acquisition of surface electromyography signals of the back muscles. The goal was to evaluate the presence or absence of a physiological phenomenon called Flexion-Relaxation Phenomenon statistically present in most healthy subjects who do not have low back pain. The research focused on the creation of a system capable of processing the different types of signals in order to obtain parameters to identify and quantify the phenomenon in an objective, automatic, and highly reliable manner.
CORNEJO, OLIVARES OSCAR EDUARDO. "In-The-Field Monitoring of Interactive Applications". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241251.
Texto completoMonitoring techniques can extract accurate data about the behavior of software systems. When used in the field, they can reveal how applications behave in real-world contexts and how programs are actually exercised by their users. However, the collection, processing, and distribution of field data must be done seamlessly and unobtrusively while users interact with their applications. To limit the intrusiveness of field monitoring a common approach is to reduce the amount of collected data (e.g., to rare events and to crash dumps), which, however, may severely affect the effectiveness of the techniques that exploit field data. This Ph.D. thesis investigates the trade-off between field monitoring and the degradation of the user experience in interactive applications, that is, applications that require user inputs to continue its operations. In particular, we identified two big challenges: to understand how the user perceives monitoring overhead and, to study how to collect data in a non-intrusive way without losing too much information. In brief, we provide three main contributions. In the first place, we present an empirical study aimed at quantifying if and to what extent the monitoring overhead introduced in an interactive application is perceived by users. The reported results can be exploited to carefully design analysis procedures running in the field. In particular, we realized that users do not perceive significant differences for an overhead of 80\% and seldom perceived an overhead of 140\%. Secondly, we introduce a monitoring framework for deriving comprehensive runtime data without affecting the quality of the user experience. The technique produces a finite state automaton that shows possible usages of the application from the events observed in the field. From the model, it is also possible to extract accurate and comprehensive traces that could be used to support various tasks, such as debugging, field failures reproduction and profiling. Finally, we present a strategy to further reduce the impact of monitoring by limiting the activity performed in parallel with users' operations: the strategy delays the saving of events to file to idle phases of the application to reduce the impact on the user experience. The approach considerably decreases the impact of monitoring on user operations producing highly accurate traces. The results obtained in this Ph.D. thesis can enable a range of testing and analysis solutions that extensively exploit field data.
NOTARANGELO, NICLA MARIA. "A Deep Learning approach for monitoring severe rainfall in urban catchments using consumer cameras. Models development and deployment on a case study in Matera (Italy) Un approccio basato sul Deep Learning per monitorare le piogge intense nei bacini urbani utilizzando fotocamere generiche. Sviluppo e implementazione di modelli su un caso di studio a Matera (Italia)". Doctoral thesis, Università degli studi della Basilicata, 2021. http://hdl.handle.net/11563/147016.
Texto completoNegli ultimi 50 anni, le alluvioni si sono confermate come il disastro naturale più frequente e diffuso a livello globale. Tra gli impatti degli eventi meteorologici estremi, conseguenti ai cambiamenti climatici, rientrano le alterazioni del regime idrogeologico con conseguente incremento del rischio alluvionale. Il monitoraggio delle precipitazioni in tempo quasi reale su scala locale è essenziale per la mitigazione del rischio di alluvione in ambito urbano e periurbano, aree connotate da un'elevata vulnerabilità. Attualmente, la maggior parte dei dati sulle precipitazioni è ottenuta da misurazioni a terra o telerilevamento che forniscono informazioni limitate in termini di risoluzione temporale o spaziale. Ulteriori problemi possono derivare dagli elevati costi. Inoltre i pluviometri sono distribuiti in modo non uniforme e spesso posizionati piuttosto lontano dai centri urbani, comportando criticità e discontinuità nel monitoraggio. In questo contesto, un grande potenziale è rappresentato dall'utilizzo di tecniche innovative per sviluppare sistemi inediti di monitoraggio a basso costo. Nonostante la diversità di scopi, metodi e campi epistemologici, la letteratura sugli effetti visivi della pioggia supporta l'idea di sensori di pioggia basati su telecamera, ma tende ad essere specifica per dispositivo scelto. La presente tesi punta a indagare l'uso di dispositivi fotografici facilmente reperibili come rilevatori-misuratori di pioggia, per sviluppare una fitta rete di sensori a basso costo a supporto dei metodi tradizionali con una soluzione rapida incorporabile in dispositivi intelligenti. A differenza dei lavori esistenti, lo studio si concentra sulla massimizzazione del numero di fonti di immagini (smartphone, telecamere di sorveglianza generiche, telecamere da cruscotto, webcam, telecamere digitali, ecc.). Ciò comprende casi in cui non sia possibile regolare i parametri fotografici o ottenere scatti in timeline o video. Utilizzando un approccio di Deep Learning, la caratterizzazione delle precipitazioni può essere ottenuta attraverso l'analisi degli aspetti percettivi che determinano se e come una fotografia rappresenti una condizione di pioggia. Il primo scenario di interesse per l'apprendimento supervisionato è una classificazione binaria; l'output binario (presenza o assenza di pioggia) consente la rilevazione della presenza di precipitazione: gli apparecchi fotografici fungono da rivelatori di pioggia. Analogamente, il secondo scenario di interesse è una classificazione multi-classe; l'output multi-classe descrive un intervallo di intensità delle precipitazioni quasi istantanee: le fotocamere fungono da misuratori di pioggia. Utilizzando tecniche di Transfer Learning con reti neurali convoluzionali, i modelli sviluppati sono stati compilati, addestrati, convalidati e testati. La preparazione dei classificatori ha incluso la preparazione di un set di dati adeguato con impostazioni verosimili e non vincolate: dati aperti, diversi dati di proprietà del National Research Institute for Earth Science and Disaster Prevention - NIED (telecamere dashboard in Giappone accoppiate con dati radar multiparametrici ad alta precisione) e attività sperimentali condotte nel simulatore di pioggia su larga scala del NIED. I risultati sono stati applicati a uno scenario reale, con la sperimentazione attraverso una telecamera di sorveglianza preesistente che utilizza la connettività 5G fornita da Telecom Italia S.p.A. nella città di Matera (Italia). L'analisi si è svolta su più livelli, fornendo una panoramica sulle questioni relative al paradigma del rischio di alluvione in ambito urbano e questioni territoriali specifiche inerenti al caso di studio. Queste ultime includono diversi aspetti del contesto, l'importante ruolo delle piogge dal guidare l'evoluzione millenaria della morfologia urbana alla determinazione delle criticità attuali, oltre ad alcune componenti di un prototipo Web per la comunicazione del rischio alluvionale su scala locale. I risultati ottenuti e l'implementazione del modello corroborano la possibilità che le tecnologie a basso costo e le capacità locali possano aiutare a caratterizzare la forzante pluviometrica a supporto dei sistemi di allerta precoce basati sull'identificazione di uno stato meteorologico significativo. Il modello binario ha raggiunto un'accuratezza e un F1-score di 85,28% e 0,86 per il set di test e di 83,35% e 0,82 per l'implementazione nel caso di studio. Il modello multi-classe ha raggiunto un'accuratezza media e F1-score medio (macro-average) di 77,71% e 0,73 per il classificatore a 6 vie e 78,05% e 0,81 per quello a 5 classi. Le prestazioni migliori sono state ottenute nelle classi relative a forti precipitazioni e assenza di pioggia, mentre le previsioni errate sono legate a precipitazioni meno estreme. Il metodo proposto richiede requisiti operativi limitati, può essere implementato facilmente e rapidamente in casi d'uso reali, sfruttando dispositivi preesistenti con un uso parsimonioso di risorse economiche e computazionali. La classificazione può essere eseguita su singole fotografie scattate in condizioni disparate da dispositivi di acquisizione di uso comune, ovvero da telecamere statiche o in movimento senza regolazione dei parametri. Questo approccio potrebbe essere particolarmente utile nelle aree urbane in cui i metodi di misurazione come i pluviometri incontrano difficoltà di installazione o limitazioni operative o in contesti in cui non sono disponibili dati di telerilevamento o radar. Il sistema non si adatta a scene che sono fuorvianti anche per la percezione visiva umana. I limiti attuali risiedono nelle approssimazioni intrinseche negli output. Per colmare le lacune evidenti e migliorare l'accuratezza della previsione dell'intensità di precipitazione, sarebbe possibile un'ulteriore raccolta di dati. Sviluppi futuri potrebbero riguardare l'integrazione con ulteriori esperimenti in campo e dati da crowdsourcing, per promuovere comunicazione, partecipazione e dialogo aumentando la resilienza attraverso consapevolezza pubblica e impegno civico in una concezione di comunità smart.
PANTINI, SARA. "Analysis and modelling of leachate and gas generation at landfill sites focused on mechanically-biologically treated waste". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/203393.
Texto completoSCHENONE, DANIELA. "Sistema di tariffazione della performance infermieristica utilizzando la metodologia ICA". Doctoral thesis, 2017. http://hdl.handle.net/2158/1095336.
Texto completoLibros sobre el tema "Sistemi di monitoraggio delle cure"
Barbari, Matteo y Francesco Sorbetti Guerri, eds. L’edilizia rurale tra sviluppo tecnologico e tutela del territorio. Florence: Firenze University Press, 2013. http://dx.doi.org/10.36253/978-88-6655-394-6.
Texto completo