Literatura académica sobre el tema "Singular Schrodinger equation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Singular Schrodinger equation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Singular Schrodinger equation"
Troy, W. C. "New singular standing wave solutions of the nonlinear Schrodinger equation". Journal of Differential Equations 267, n.º 2 (julio de 2019): 979–1000. http://dx.doi.org/10.1016/j.jde.2019.01.031.
Texto completoZhunussova, Zh Kh. "The surface to singular solitonic solution of the nonlinear Schrodinger equation". BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 88, n.º 4 (30 de diciembre de 2017): 26–33. http://dx.doi.org/10.31489/2017m4/26-33.
Texto completoTekercioglu, Ramazan. "On the traveling wave solutions of pulse propagation in monomode fiber via the extended Kudryashov’s approach". Thermal Science 26, Spec. issue 1 (2022): 49–59. http://dx.doi.org/10.2298/tsci22s1049t.
Texto completoLin, Yuanhua y Liping He. "Existence of Traveling Wave Fronts for a Generalized Nonlinear Schrodinger Equation". Advances in Mathematical Physics 2022 (16 de agosto de 2022): 1–6. http://dx.doi.org/10.1155/2022/9638150.
Texto completoVshivteev, A. S., N. V. Norin y V. N. Sorokin. "Spectral problem for the Schrodinger equation with singular potential polynomial of even degree". Russian Physics Journal 39, n.º 5 (mayo de 1996): 442–56. http://dx.doi.org/10.1007/bf02436783.
Texto completoESTEVEZ, P. G. y G. A. HERNAEZ. "Painleve Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrodinger Equation". Journal of Non-linear Mathematical Physics 8, Supplement (2001): 106. http://dx.doi.org/10.2991/jnmp.2001.8.supplement.19.
Texto completoKapitula, Todd. "Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrödinger equation". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, n.º 3 (1998): 585–629. http://dx.doi.org/10.1017/s030821050002165x.
Texto completoRaza, Nauman, Riaz ur Rahman, Aly Seadawy y Adil Jhangeer. "Computational and bright soliton solutions and sensitivity behavior of Camassa–Holm and nonlinear Schrödinger dynamical equation". International Journal of Modern Physics B 35, n.º 11 (30 de abril de 2021): 2150157. http://dx.doi.org/10.1142/s0217979221501575.
Texto completoShalaby, A. M. "Dimensional Regularization of the Spatial wave function for a singular contact interaction in the Relativistic Schrodinger Equation". Journal of Physics: Conference Series 670 (25 de enero de 2016): 012045. http://dx.doi.org/10.1088/1742-6596/670/1/012045.
Texto completoCASAHORRÁN, J. "A NEW SUPERSYMMETRIC VERSION OF THE ABRAHAM-MOSES METHOD FOR SYMMETRIC POTENTIALS". Reviews in Mathematical Physics 08, n.º 05 (julio de 1996): 655–68. http://dx.doi.org/10.1142/s0129055x96000226.
Texto completoTesis sobre el tema "Singular Schrodinger equation"
LIN, JIAN-HUNG y 林建宏. "Singular Limit of the Nonlinear Schrodinger Equation". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/07313256463289097112.
Texto completo國立成功大學
數學系應用數學碩博士班
93
The purpose of this paper is to the study of singular limit for the convective NLS equation. First, we use two different methods to get conservation laws of the convective NLS equation. And then the local existence in time of the classical solutions can be established via an iteration method and the uniqueness of the solution is also proved. At last we prove the semiclassical limit of the solution.
Baldelli, Laura. "Existence and multiplicity results for nonlinear elliptic problems". Doctoral thesis, 2022. http://hdl.handle.net/2158/1261959.
Texto completoLibros sobre el tema "Singular Schrodinger equation"
Fibich, Gadi. Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer London, Limited, 2015.
Buscar texto completoFibich, Gadi. The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, 2015.
Buscar texto completoFibich, Gadi. The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Singular Schrodinger equation"
Wang, Xiao-Ping. "Numerical Simulations of Singular Solutions of the Nonlinear Schrodinger Equations". En Effective Computational Methods for Wave Propagation, 7–32. Chapman and Hall/CRC, 2008. http://dx.doi.org/10.1201/9781420010879.ch1.
Texto completoActas de conferencias sobre el tema "Singular Schrodinger equation"
Deriglazov, Alexei. "On singular lagrangian underlying the Schrodinger equation". En 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0067.
Texto completoRadisavljevic-Gajic, Verica, Dimitrios A. Karagiannis, Meng-Bi Cheng y Wu-Chung Su. "Recent Trends in Stabilization and Control of Distributed Parameter Dynamic Systems". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37151.
Texto completo