Índice
Literatura académica sobre el tema "Simulations moléculaire interactive"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Simulations moléculaire interactive".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Simulations moléculaire interactive"
Lanrezac, André. "Interprétation de données expérimentales par simulation et visualisation moléculaire interactive". Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7133.
Texto completoThe goal of Interactive Molecular Simulations (IMS) is to observe the conformational dynamics of a molecular simulation in real-time. Instant visual feedback enables informative monitoring and observation of structural changes imposed by the user's manipulation of the IMS. I conducted an in-depth study of knowledge to gather and synthesize all the research that has developed IMS. Interactive Molecular Dynamics (IMD) is one of the first IMS protocols that laid the foundation for the development of this approach. My thesis laboratory was inspired by IMD to develop the BioSpring simulation engine based on the elastic network model. This model allows for the simulation of the flexibility of large biomolecular ensembles, potentially revealing long-timescale changes that would not be easily captured by molecular dynamics. This simulation engine, along with the UnityMol visualization software, developed through the Unity3D game engine, and linked by the MDDriver communication interface, has been extended to converge towards a complete software suite. The goal is to provide an experimenter, whether an expert or novice, with a complete toolbox for modeling, displaying, and interactively controlling all parameters of a simulation. The particular implementation of such a protocol, based on formalized and extensible communication between the different components, was designed to easily integrate new possibilities for interactive manipulation and sets of experimental data that will be added to the restraints imposed on the simulation. Therefore, the user can manipulate the molecule of interest under the control of biophysical properties integrated into the simulated model, while also having the ability to dynamically adjust simulation parameters. Furthermore, one of the initial objectives of this thesis was to integrate the management of ambiguous interaction constraints from the HADDOCK biomolecular docking software directly into UnityMol, making it possible to use these same restraints with a variety of simulation engines. A primary focus of this research was to develop a fast and interactive protein positioning algorithm in implicit membranes using a model called the Integrative Membrane Protein and Lipid Association Method (IMPALA), developed by Robert Brasseur's team in 1998. The first step was to conduct an in-depth search of the conditions under which the experiments were performed at the time to verify the method and validate our own implementation. We will see that this opens up interesting questions about how scientific experiments can be reproduced. The final step that concluded this thesis was the development of a new universal lipid-protein interaction method, UNILIPID, which is an interactive protein incorporation model in implicit membranes. It is independent of the representation scale and can be applied at the all-atom, coarse-grain, or grain-by-grain level. The latest Martini3 representation, as well as a Monte Carlo sampling method and rigid body dynamics simulation, have been specially integrated into the method, in addition to various system preparation tools. Furthermore, UNILIPID is a versatile approach that precisely reproduces experimental hydrophobicity terms for each amino acid. In addition to simple implicit membranes, I will describe an analytical implementation of double membranes as well as a generalization to arbitrarily shaped membranes, both of which rely on novel applications
Barnoud, Jonathan. "Interaction entre modèles de membranes biologiques et nanoparticules, une études par simulation moléculaire". Paris 7, 2014. http://www.theses.fr/2014PA077260.
Texto completoBiological membranes have a crucial role in cells as they form their outer boundary with the plasma membrane, but also the inner boundaries as they border the organelles. Membranes regulate the flow of matter, information, and energy in all cell compartments. A membrane functions are tightly attached to its composition, so alterations of a membrane composition can alter the membrane function. Such change in composition can be due to the addition of exogenous molecules as drugs or pollutants. How these exogenous molecules alter membrane properties is not always known nor understood. In addition, the chemical environment of a molecule affects the its behavior; therefore, exogenous molecules embedded in a lipid membrane can be affected by the membrane. The molecular details of this effect on small molecules are not fully understood. In this thesis, I used molecular dynamics simulations to investigate the effect of carbon nanoparticules on the properties of membrane models, and the effect of these membranes on nanoparticules. I showed that polystyrene nanoparticules alter some membrane properties, especially the lipid lateral organization. Other hydrophobie molecules affect lipid lateral organization. This effect depends on the molecule: aromatic molecules, including C60 fullerene, stabilize the separation of the lipids; on the contrary, aliphatic molecules mix the lipids. C60 fullerene also destabilize lung surfactant. I investigated the effect of membrane properties on the dimerization of transmembrane peptides. Finally I characterized how C60 fullerene aggregate less in a lipid membrane than in chemically similar bulk alkanes
Özdamar, Burak. "First-principles simulations of the interaction of metal-organic molecules with a surface and as building blocks for nanodevices". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE043/document.
Texto completoThe purpose of this study is to investigate the interaction of organometallic complexes with transition metals. This topic in question has a broad array of applications in a number of domain; realization of nanojunctions for molecular nanoelectronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures. The principal tool used in this study is first-principles simulation methods such as the Born-Oppenheimer and Car-Parrinello molecular dynamics. The first chapter presents an emphasis of the current developments in the related field alongside of a retrospective on the historical developments that leads today's knowledge. The second chapter presents the basic elements of the theory behind the methods that were used in the thesis, whose development has also been contributed during this research project. Lastly, the third chapter which is organized in three sub-chapters enumerates and describes the results of the various systems studied.Molecular dynamics, constrained dynamics, molecular electronics, molecular junctions, ferrocene, fullerene, metal-organic precursors
Roux, Raphaël. "Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire". Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00597479.
Texto completoSimard, Jean. "Collaboration haptique étroitement couplée pour la manipulation moléculaire interactive". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00688036.
Texto completoDavydova, Alexandra. "MD simulation of H2 plasma/graphene interaction for innovative etching processes development". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT054.
Texto completoGraphene is a two-dimensional material with unique physical, chemical and mechanical properties. It could be promising for novel applications, but the nm-scale control of graphene processing challenges current technology, especially in plasma treatment, thus preventing the development of graphene based technology at industrial scale. The main issue associated with plasma/graphene processes is the atomic thickness of the material: graphene is easily damaged upon exposure to reactive plasma. One critical question to answer then: is it possible to use conventional plasma technologies to pattern/clean/dope graphene layers, as is done for other materials in the microelectronic industry?Hydrogen plasmas have been shown to be promising for graphene treatment with minimal damages, but little is known about the fundamental mechanisms involved in graphene etching. Thus, in our work, we applied classical molecular dynamics (MD) simulations of H2 plasma/graphene interaction to assist the development of three important processes. First, MD allowed us to explain the lateral etching mechanisms of graphene nanorribons (GNR) in downstream H2 plasmas, which is an important technological step to produce GNR with a width<10 nm. Second, we show that H2 plasmas can be used to clean polymeric residues from the graphene surface (selective removal of PMMA/photo-resist residues or atmospheric contaminant from its surface). Modeling results combined with experimental work shows very promising results in this application, which is demanded by the entire graphene community. Third, MD simulations were also used to assist the development of multilayer graphene processing by Atomic Layer Etching. Although irreversible damages of graphene are observed when the ion bombarding energy is in the 5-50 eV range, MD predicts a very interesting phenomenon at 20-25eV range: the implantation of hydrogen atoms and subsequent formation of H2 gas sandwiched between first two layers. This causes a pressure rise, which leads to a lift-off of the entire top graphene layer. This result from modeling suggests that H2 plasmas can be used to etch graphene layer by layer in a controlled way through an entirely new mechanism. However, in order to avoid damages of underneath layers during the processing, additional investigations should be provided.In conclusion, several novel and unexpected results were obtained during the present PhD study and MD simulations have proven to be a powerful tool to assist plasma process development. Indeed, based on this fundamental research work an ANR project was launched to develop cleaning, doping and etching processes of graphene in the ICP reactors available in the LTM laboratory, Grenoble, France. MD calculation developed during this PhD will therefore continue to be used to assist further the development of innovative processes.The current PhD project was held in LTM etching group Grenoble, France under supervision of Gilles Cunge and Emilie Despiau-Pujo in the framework of the Chair of Excellence 2010 of Prof. David Graves and financial support of Nanoscience Foundation. We would like to acknowledge collaboration with several groups from Institute Neel (Vincent Bouchiat, Laurence Magaud and Johann Coraux) and our colleagues from CEA-Grenoble, France (Okuno Hanako)
Luo, Yun. "Etude des interactions sucre-sucre : synthèse totale de deux glycosphingolipides pentaosyl Lewis déoxygéné et simulations de dynamique moléculaire d'un agglomérat de Lewis". Paris 6, 2007. http://www.theses.fr/2007PA066355.
Texto completoDoutreligne, Sébastien. "interactive molecular dynamics software development : Application to biomolecule folding". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC180/document.
Texto completoThe folding of biomolecules by computational methods remains a big challenge. Most notably, all-atom molecular dynamics (MD) simulations are intrinsically time consuming and do not yet commonly reach the microsecond time scale. Generally, a coarse-grained approach is preferred to simulate bigger systems and larger time scales. Automated approaches like MD do not account for the investigator expertise. The present thesis explores the folding of biomolecules with interactive molecular dynamics (IMD) simulations using the OPEP and HiRE-RNA models, respectively for amino acids and nucleic acids. IMD is like MD, but in addition, the user can apply forces on a selection of atoms and see the reaction of the system live from a molecular visualization software while the simulation is running. Dedicated software developments were done in such a program named UnityMol, coupled with coarse-grained OPEP and HiRE-RNA simulations. The picture is completed with an incursion into integrative biology. The use of theoretical and experimental models is proposed in two declinations: biasing MD simulations to faster converge to plausible results and guide users during interactive sessions. This work shows the complementarity of experimental and theoretical methods when it comes to biomolecules. A few trials at folding with IMD and our set of tools are exposed: mainly a crowdsourcing approach to RNA folding with coarse-grained HiRE-RNA models and the interactive folding of peptides in a laboratory setup of OPEP simulations. In complement, virtual reality aspects and performance enhancement of a spring network model simulation package named BioSpring have been explored
Khalfa, Adil. "Etude des cycles peptidiques en interaction avec les membranes lipidiques par simulations de dynamique moléculaire utilisant l'approche gros grains". Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10024/document.
Texto completoCyclic peptides (CPs) composed of an even number of alternating D and L amino acids, are able to self-assemble into hollow tubular peptide nanotubes by means of a network of hydrogen bonds. The partition of hydrophobic CPs in lipid membranes forms an artificial transmembrane nanotube, while charged CPs characterized by amphipathic properties exhibit high antibacterial activity against Gram-positive and Gram-negative bacteria. The main goal of our investigation consisted to studying the interaction of cyclic peptides with lipid membranes using coarse grained molecular dynamics simulations in order to characterize the process of self assembly in solution, formation of transmembrane nanotubes and antibacterial activity of cyclic peptides. The results obtained revealed that, the activity of these CPs are governed by their physicochemical properties and by the interactions with the membrane lipid head-groups. In the case of hydrophobic CPs, the peptides pre-assemble as clusters before re-organizing in the interior of the membrane to form transmembrane nanotubes. For cationic CPs, the antibacterial activity seems to result from a release of phospholipid micelles following a carpet-like model adsorption. This study required a large effort in optimizing the coarse grain force field published so far. We have indeed shown their shortcomings, and optimized the parameters describing the interactions involving several amino-acids such as Leu, Trp, Arg and Lys. We have extended the study to the investigation of the folding of transmembrane and antimicrobial peptides probing hence the transferability of the optimized coarse grained model force field
Madeleine, Noelly. "Recherche d'inhibiteurs de l'interaction Lutheran-Laminine par des techniques de modélisation et de simulation moléculaires". Thesis, La Réunion, 2017. http://www.theses.fr/2017LARE0054/document.
Texto completoDrepanocytosis is a genetic blood disorder characterized by red blood cells that assume an abnormal sickle shape. In the pathogenesis of vaso-occlusive crises of sickle cell disease, red blood cells bind to the vascular endothelium and promote vaso-occlusion. At the surface of these sickle red blood cells, the overexpressed protein Lutheran (Lu) strongly interacts with the Laminin (Ln) 511/521.The aim of this study was to identify a protein-protein interaction (PPI) inhibitor with a highprobability of binding to Lu for the inhibition of the Lu-Ln 511/521 interaction. A virtual screening was performed with 1 295 678 compounds that target Lu. Prior validation of a robust scoring protocol was considered on the protein CD80 because this protein has a binding site with similar topological and physico-chemical characteristics and it also has a series of ligands with known affinity constants. This protocol consisted of multiple filtering steps based on calculated affinities (scores), molecular dynamics simulations and molecular properties. A robust scoring protocol was validated on the protein CD80 with the docking program DOCK6 and the scoring functions XSCORE and MM-PBSA and also with the FMO method. This protocol was applied to the protein Lu and we found two compounds that were validated by in vitro studies. The protection of these ligands by a patent is under process. Nine other compounds were identified by the scoring functionXSCORE and seem to be promising candidates for inhibiting the Lu-Ln 511/521 interaction