Artículos de revistas sobre el tema "Shortcut learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Shortcut learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kim, Doyoung, Dongmin Park, Yooju Shin, Jihwan Bang, Hwanjun Song y Jae-Gil Lee. "Adaptive Shortcut Debiasing for Online Continual Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de marzo de 2024): 13122–31. http://dx.doi.org/10.1609/aaai.v38i12.29211.
Texto completoNauta, Meike, Ricky Walsh, Adam Dubowski y Christin Seifert. "Uncovering and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer Diagnosis". Diagnostics 12, n.º 1 (24 de diciembre de 2021): 40. http://dx.doi.org/10.3390/diagnostics12010040.
Texto completoGeirhos, Robert, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge y Felix A. Wichmann. "Shortcut learning in deep neural networks". Nature Machine Intelligence 2, n.º 11 (noviembre de 2020): 665–73. http://dx.doi.org/10.1038/s42256-020-00257-z.
Texto completoFay, Louisa, Erick Cobos, Bin Yang, Sergios Gatidis y Thomas Küstner. "Avoiding Shortcut-Learning by Mutual Information Minimization in Deep Learning-Based Image Processing". IEEE Access 11 (2023): 64070–86. http://dx.doi.org/10.1109/access.2023.3289397.
Texto completoPOTAPOV, ALEXEI B. y M. K. ALI. "LEARNING, EXPLORATION AND CHAOTIC POLICIES". International Journal of Modern Physics C 11, n.º 07 (octubre de 2000): 1455–64. http://dx.doi.org/10.1142/s0129183100001309.
Texto completoMORIHIRO, KOICHIRO, NOBUYUKI MATSUI y HARUHIKO NISHIMURA. "CHAOTIC EXPLORATION EFFECTS ON REINFORCEMENT LEARNING IN SHORTCUT MAZE TASK". International Journal of Bifurcation and Chaos 16, n.º 10 (octubre de 2006): 3015–22. http://dx.doi.org/10.1142/s0218127406016616.
Texto completoDu, Mengnan, Fengxiang He, Na Zou, Dacheng Tao y Xia Hu. "Shortcut Learning of Large Language Models in Natural Language Understanding". Communications of the ACM 67, n.º 1 (21 de diciembre de 2023): 110–20. http://dx.doi.org/10.1145/3596490.
Texto completoHAN, FANG, MARIAN WIERCIGROCH, JIAN-AN FANG y ZHIJIE WANG. "EXCITEMENT AND SYNCHRONIZATION OF SMALL-WORLD NEURONAL NETWORKS WITH SHORT-TERM SYNAPTIC PLASTICITY". International Journal of Neural Systems 21, n.º 05 (octubre de 2011): 415–25. http://dx.doi.org/10.1142/s0129065711002924.
Texto completoHu, Ruilin, Yajun Du, Jingrong Hu y Hui Li. "Cross-community shortcut detection based on network representation learning and structural features". Intelligent Data Analysis 27, n.º 3 (18 de mayo de 2023): 709–32. http://dx.doi.org/10.3233/ida-216513.
Texto completoZhong, Yujie, Xiao Li, Jiangjian Xie y Junguo Zhang. "A Lightweight Automatic Wildlife Recognition Model Design Method Mitigating Shortcut Learning". Animals 13, n.º 5 (25 de febrero de 2023): 838. http://dx.doi.org/10.3390/ani13050838.
Texto completoTrivedi, Anusua, Caleb Robinson, Marian Blazes, Anthony Ortiz, Jocelyn Desbiens, Sunil Gupta, Rahul Dodhia et al. "Deep learning models for COVID-19 chest x-ray classification: Preventing shortcut learning using feature disentanglement". PLOS ONE 17, n.º 10 (6 de octubre de 2022): e0274098. http://dx.doi.org/10.1371/journal.pone.0274098.
Texto completoLao, Mingrui, Nan Pu, Yu Liu, Kai He, Erwin M. Bakker y Michael S. Lew. "COCA: COllaborative CAusal Regularization for Audio-Visual Question Answering". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 11 (26 de junio de 2023): 12995–3003. http://dx.doi.org/10.1609/aaai.v37i11.26527.
Texto completoNatsir, Siti Zahra Mulianti, Bibin Rubini, Didit Ardianto y Nurhaedah Madjid. "Interactive Learning Multimedia: A Shortcut for Boosting Gen-Z’s Digital literacy in Science Classroom". Jurnal Penelitian Pendidikan IPA 8, n.º 5 (30 de noviembre de 2022): 2168–75. http://dx.doi.org/10.29303/jppipa.v8i5.1897.
Texto completoFathima, Sheeba. "Music Genre Classification using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 9, n.º VII (10 de julio de 2021): 66–71. http://dx.doi.org/10.22214/ijraset.2021.36087.
Texto completoRees, Simon, Megan Bruce y Steven Bradley. "Utilising data-driven learning in chemistry teaching: A shortcut to improving chemical language comprehension". New Directions in the Teaching of Physical Sciences, n.º 10 (1 de junio de 2014): 12–19. http://dx.doi.org/10.29311/ndtps.v0i10.511.
Texto completoRees, Simon, Megan Bruce y Steven Bradley. "Utilising Data-driven Learning in Chemistry Teaching: a Shortcut to Improving Chemical Language Comprehension". New Directions 10, n.º 1 (junio de 2014): 12–19. http://dx.doi.org/10.11120/ndir.2014.00028.
Texto completoWilkinson, Anna, Karin Kuenstner, Julia Mueller y Ludwig Huber. "Social learning in a non-social reptile ( Geochelone carbonaria )". Biology Letters 6, n.º 5 (31 de marzo de 2010): 614–16. http://dx.doi.org/10.1098/rsbl.2010.0092.
Texto completoMengue-Topio, Hursula, Yannick Courbois, Emily K. Farran y Pascal Sockeel. "Route learning and shortcut performance in adults with intellectual disability: A study with virtual environments". Research in Developmental Disabilities 32, n.º 1 (enero de 2011): 345–52. http://dx.doi.org/10.1016/j.ridd.2010.10.014.
Texto completoClegg, Benjamin A. "Stimulus-Specific Sequence Representation in Serial Reaction Time Tasks". Quarterly Journal of Experimental Psychology Section A 58, n.º 6 (agosto de 2005): 1087–101. http://dx.doi.org/10.1080/02724980443000485.
Texto completoSong, Rui, Fausto Giunchiglia, Yingji Li, Mingjie Tian y Hao Xu. "TACIT: A Target-Agnostic Feature Disentanglement Framework for Cross-Domain Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 17 (24 de marzo de 2024): 18999–9007. http://dx.doi.org/10.1609/aaai.v38i17.29866.
Texto completoSuparjan, Suparjan y Nining Ismiyani. "The Use of Tanjungpura University’s e-Learning-Moodle LMS during Online Learning: Problems, Solutions and Continuation". Ta'dib 26, n.º 1 (25 de junio de 2023): 71. http://dx.doi.org/10.31958/jt.v26i1.7902.
Texto completoHusain, Arshi y Virendra P. Vishvakarma. "Optimized deterministic multikernel extreme learning machine for classification of COVID-19 chest Xray images". Journal of Information and Optimization Sciences 44, n.º 4 (2023): 771–93. http://dx.doi.org/10.47974/jios-1319.
Texto completoXu, Chendong, Weigang Wang, Yunwei Zhang, Jie Qin, Shujuan Yu y Yun Zhang. "An Indoor Localization System Using Residual Learning with Channel State Information". Entropy 23, n.º 5 (7 de mayo de 2021): 574. http://dx.doi.org/10.3390/e23050574.
Texto completoArun, K. y A. Srinagesh. "Multilingual twitter sentiment analysis using machine learning". International Journal of Electrical and Computer Engineering (IJECE) 10, n.º 6 (1 de diciembre de 2020): 5992. http://dx.doi.org/10.11591/ijece.v10i6.pp5992-6000.
Texto completoZheng, Hui, Yizhi Cao, Min Sun, Guihai Guo, Junzhen Meng, Xinwei Guo y Yanchi Jiang. "Mixed Structure with 3D Multi-Shortcut-Link Networks for Hyperspectral Image Classification". Remote Sensing 14, n.º 5 (2 de marzo de 2022): 1230. http://dx.doi.org/10.3390/rs14051230.
Texto completoHolmberg, Linn. "Right and Wrong Ways of Knowing". 1700-tal: Nordic Journal for Eighteenth-Century Studies 20 (20 de diciembre de 2023): 8–33. http://dx.doi.org/10.7557/4.7203.
Texto completoSun, Chaoyue, Ruogu Fang, Marco Salemi, Mattia Prosperi y Brittany Rife Magalis. "DeepDynaForecast: Phylogenetic-informed graph deep learning for epidemic transmission dynamic prediction". PLOS Computational Biology 20, n.º 4 (10 de abril de 2024): e1011351. http://dx.doi.org/10.1371/journal.pcbi.1011351.
Texto completoThanuja, B. "Machine Learning Based Crime Rate Analysis Using Python". International Journal for Research in Applied Science and Engineering Technology 10, n.º 11 (30 de noviembre de 2022): 1312–16. http://dx.doi.org/10.22214/ijraset.2022.47574.
Texto completoWelte, Peter O. "Caveat Examiner: Beware Clever Students". Perceptual and Motor Skills 77, n.º 3_suppl (diciembre de 1993): 1213–14. http://dx.doi.org/10.2466/pms.1993.77.3f.1213.
Texto completoPollock, Mica. "Flipping Our Scripts about Undocumented Immigration". Genealogy 4, n.º 1 (19 de marzo de 2020): 29. http://dx.doi.org/10.3390/genealogy4010029.
Texto completoPetrov, Sergei, Tapan Mukerji, Xin Zhang y Xinfei Yan. "Shape Carving Methods of Geologic Body Interpretation from Seismic Data Based on Deep Learning". Energies 15, n.º 3 (31 de enero de 2022): 1064. http://dx.doi.org/10.3390/en15031064.
Texto completoMah, Christopher, Hillary Walker, Lena Phalen, Sarah Levine, Sarah W. Beck y Jaylen Pittman. "Beyond CheatBots: Examining Tensions in Teachers’ and Students’ Perceptions of Cheating and Learning with ChatGPT". Education Sciences 14, n.º 5 (7 de mayo de 2024): 500. http://dx.doi.org/10.3390/educsci14050500.
Texto completoWang, Tong, Yuan Yao, Feng Xu, Miao Xu, Shengwei An y Ting Wang. "Inspecting Prediction Confidence for Detecting Black-Box Backdoor Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de marzo de 2024): 274–82. http://dx.doi.org/10.1609/aaai.v38i1.27780.
Texto completoSulistyo, Totok y Rohmat Fauzi. "Soil Infiltration Rate Prediction using Machine Learning Regression Model: A Case Study on Sepinggan River Basin, Balikpapan, Indonesia". Indonesian Journal on Geoscience 10, n.º 3 (23 de noviembre de 2023): 335–47. http://dx.doi.org/10.17014/ijog.10.3.335-347.
Texto completoRamsgaard Thomsen, Mette, Paul Nicholas, Martin Tamke, Sebastian Gatz, Yuliya Sinke y Gabriella Rossi. "Towards machine learning for architectural fabrication in the age of industry 4.0". International Journal of Architectural Computing 18, n.º 4 (17 de agosto de 2020): 335–52. http://dx.doi.org/10.1177/1478077120948000.
Texto completoKURAKAMI, Takeru, Kazuyoshi SOUMA, Takashi MIYAMOTO, Takahiko FURUYA, Jun MAGOME y Hiroshi ISHIDAIRA. "APPLICATION OF A DEEP-LEARNING METHOD INCLUDING SHORTCUT PATHS TO CORRECT THE PRECIPITATION OUTPUTS OF A NUMERICAL WEATHER PREDICTION MODEL". Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) 76, n.º 5 (2020): I_471—I_478. http://dx.doi.org/10.2208/jscejer.76.5_i_471.
Texto completoLópez-Cabrera, José Daniel, Rubén Orozco-Morales, Jorge Armando Portal-Díaz, Orlando Lovelle-Enríquez y Marlén Pérez-Díaz. "Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem". Health and Technology 11, n.º 6 (10 de octubre de 2021): 1331–45. http://dx.doi.org/10.1007/s12553-021-00609-8.
Texto completoZhao, Yu, Rennong Yang, Guillaume Chevalier, Ximeng Xu y Zhenxing Zhang. "Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors". Mathematical Problems in Engineering 2018 (30 de diciembre de 2018): 1–13. http://dx.doi.org/10.1155/2018/7316954.
Texto completoJ, Kamalakannan y Chandana Mani R K. "ERNet : Enhanced ResNet for classification of breast histopathological images". ELCVIA Electronic Letters on Computer Vision and Image Analysis 22, n.º 2 (14 de marzo de 2024): 53–68. http://dx.doi.org/10.5565/rev/elcvia.1614.
Texto completoHe, Z., H. He, J. Li, M. A. Chapman y H. Ding. "A SHORT-CUT CONNECTIONS-BASED NEURAL NETWORK FOR BUILDING EXTRACTION FROM HIGH RESOLUTION ORTHOIMAGERY". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2022 (30 de mayo de 2022): 39–44. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2022-39-2022.
Texto completoLiu, Yao, Lianru Gao, Chenchao Xiao, Ying Qu, Ke Zheng y Andrea Marinoni. "Hyperspectral Image Classification Based on a Shuffled Group Convolutional Neural Network with Transfer Learning". Remote Sensing 12, n.º 11 (1 de junio de 2020): 1780. http://dx.doi.org/10.3390/rs12111780.
Texto completoXu, Pengcheng, Zhongyuan Guo, Lei Liang y Xiaohang Xu. "MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes". Sensors 21, n.º 15 (29 de julio de 2021): 5125. http://dx.doi.org/10.3390/s21155125.
Texto completoMalik, Sohail Iqbal, Mohanaad Shakir, Abdalla Eldow y Mohammed Waseem Ashfaque. "Promoting Algorithmic Thinking in an Introductory Programming Course". International Journal of Emerging Technologies in Learning (iJET) 14, n.º 01 (17 de enero de 2019): 84. http://dx.doi.org/10.3991/ijet.v14i01.9061.
Texto completoDevaney, Kirsty. "‘Waiting for the wow factor’: Perspectives on computer technology in classroom composing". Journal of Music, Technology & Education 12, n.º 2 (1 de septiembre de 2019): 121–39. http://dx.doi.org/10.1386/jmte_00002_1.
Texto completoXu, Yao y Qin Yu. "Adaptive Weighted Multi-Level Fusion of Multi-Scale Features: A New Approach to Pedestrian Detection". Future Internet 13, n.º 2 (2 de febrero de 2021): 38. http://dx.doi.org/10.3390/fi13020038.
Texto completoXie, Zhousan, Shikui Tu y Lei Xu. "Multilevel Attention Network with Semi-supervised Domain Adaptation for Drug-Target Prediction". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de marzo de 2024): 329–37. http://dx.doi.org/10.1609/aaai.v38i1.27786.
Texto completoMohamed, Islam A., Adel Othman y Mohamed Fathy. "A new approach to improve reservoir modeling via machine learning". Leading Edge 39, n.º 3 (marzo de 2020): 170–75. http://dx.doi.org/10.1190/tle39030170.1.
Texto completoZakareya, Salman, Habib Izadkhah y Jaber Karimpour. "A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images". Diagnostics 13, n.º 11 (1 de junio de 2023): 1944. http://dx.doi.org/10.3390/diagnostics13111944.
Texto completoHe, Anzheng, Zishuo Dong, Hang Zhang, Allen A. Zhang, Shi Qiu, Yang Liu, Kelvin C. P. Wang y Zhihao Lin. "Automated Pixel-Level Detection of Expansion Joints on Asphalt Pavement Using a Deep-Learning-Based Approach". Structural Control and Health Monitoring 2023 (23 de mayo de 2023): 1–15. http://dx.doi.org/10.1155/2023/7552337.
Texto completoZhang, Xuetao, Kuangang Fan, Haonan Hou y Chuankai Liu. "Real-Time Detection of Drones Using Channel and Layer Pruning, Based on the YOLOv3-SPP3 Deep Learning Algorithm". Micromachines 13, n.º 12 (11 de diciembre de 2022): 2199. http://dx.doi.org/10.3390/mi13122199.
Texto completo