Literatura académica sobre el tema "Shear flow"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Shear flow".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Shear flow"

1

Cisneros-Aguirre, Jesús, J. L. Pelegrí y P. Sangrà. "Experiments on layer formation in stratified shear flow". Scientia Marina 65, S1 (30 de julio de 2001): 117–26. http://dx.doi.org/10.3989/scimar.2001.65s1117.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Padilla, Paz y So/ren Toxvaerd. "Simulating shear flow". Journal of Chemical Physics 104, n.º 15 (15 de abril de 1996): 5956–63. http://dx.doi.org/10.1063/1.471327.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ozono, Shigehira, Takao Kitajima y Takejiro Ichiki. "THE FLOW AROUND RECTANGULAR CYLINDERS PLACED IN SIMPLE SHEAR(Flow around Cylinder 1)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 427–32. http://dx.doi.org/10.1299/jsmeicjwsf.2005.427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Radko, Timour. "Instabilities of a Time-Dependent Shear Flow". Journal of Physical Oceanography 49, n.º 9 (septiembre de 2019): 2377–92. http://dx.doi.org/10.1175/jpo-d-19-0067.1.

Texto completo
Resumen
AbstractThis study offers a systematic stability analysis of unsteady shear flows representing large-scale, low-frequency internal waves in the ocean. The analysis is based on the unbounded time-dependent Couette model. This setup makes it possible to isolate the instabilities caused by uniform shear from those that can be attributed to resonant triad interactions or to the presence of inflection points in vertical velocity profiles. Linear analysis suggests that time-dependent spatially uniform shears are unstable regardless of the Richardson number (Ri). However, the growth rate of instability monotonically decreases with increasing Ri and increases with increasing frequency of oscillations. Therefore, models assuming a steady basic state—which are commonly used to conceptualize shear-induced instability and mixing—can be viewed as singular limits of the corresponding time-dependent systems. The present investigation is focused on the supercritical range of Richardson numbers (Ri > 1/4) where steady parallel flows are stable. An explicit relation is proposed for the growth rate of shear instability as a function of background parameters. For moderately supercritical Richardson numbers (Ri ~ 1), we find that the growth rates obtained are less than, but comparable to, those expected for Kelvin–Helmholtz instabilities of steady shears at Ri < 1/4. Hence, we conclude that the instability of time-dependent flows could represent a viable mixing mechanism in the ocean, particular in regions characterized by relatively weak wave activity and predominantly supercritical large-scale shears.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lui, Mathew, Elizabeth E. Gardiner, Jane F. Arthur, Isaac Pinar, Woei Ming Lee, Kris Ryan, Josie Carberry y Robert K. Andrews. "Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors". International Journal of Molecular Sciences 20, n.º 12 (18 de junio de 2019): 2967. http://dx.doi.org/10.3390/ijms20122967.

Texto completo
Resumen
Thrombus formation in hemostasis or thrombotic disease is initiated by the rapid adhesion, activation, and aggregation of circulating platelets in flowing blood. At arterial or pathological shear rates, for example due to vascular stenosis or circulatory support devices, platelets may be exposed to highly pulsatile blood flow, while even under constant flow platelets are exposed to pulsation due to thrombus growth or changes in vessel geometry. The aim of this study is to investigate platelet thrombus formation dynamics within flow conditions consisting of either constant or variable shear. Human platelets in anticoagulated whole blood were exposed ex vivo to collagen type I-coated microchannels subjected to constant shear in straight channels or variable shear gradients using different stenosis geometries (50%, 70%, and 90% by area). Base wall shears between 1800 and 6600 s−1, and peak wall shears of 3700 to 29,000 s−1 within stenoses were investigated, representing arterial-pathological shear conditions. Computational flow-field simulations and stenosis platelet thrombi total volume, average volume, and surface coverage were analysed. Interestingly, shear gradients dramatically changed platelet thrombi formation compared to constant base shear alone. Such shear gradients extended the range of shear at which thrombi were formed, that is, platelets became hyperthrombotic within shear gradients. Furthermore, individual healthy donors displayed quantifiable differences in extent/formation of thrombi within shear gradients, with implications for future development and testing of antiplatelet agents. In conclusion, here, we demonstrate a specific contribution of blood flow shear gradients to thrombus formation, and provide a novel platform for platelet functional testing under shear conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Haupt, Sue Ellen, James C. McWilliams y Joseph J. Tribbia. "Modons in Shear Flow". Journal of the Atmospheric Sciences 50, n.º 9 (mayo de 1993): 1181–98. http://dx.doi.org/10.1175/1520-0469(1993)050<1181:misf>2.0.co;2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kim, Eun-jin. "Role of magnetic shear in flow shear suppression". Physics of Plasmas 14, n.º 8 (agosto de 2007): 084504. http://dx.doi.org/10.1063/1.2762179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Borzsák, István y András Baranyai. "Shear flow in the infinite-shear-rate limit". Physical Review E 52, n.º 4 (1 de octubre de 1995): 3997–4008. http://dx.doi.org/10.1103/physreve.52.3997.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Savin, L. A. y E. A. Mashkov. "Shear Flow of Low-Viscosity Liquids in Elastic Converging Channels". Advanced Materials & Technologies, n.º 4 (2017): 041–48. http://dx.doi.org/10.17277/amt.2017.04.pp.041-048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Conway, Daniel E., Marcie R. Williams, Suzanne G. Eskin y Larry V. McIntire. "Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal". American Journal of Physiology-Heart and Circulatory Physiology 298, n.º 2 (febrero de 2010): H367—H374. http://dx.doi.org/10.1152/ajpheart.00565.2009.

Texto completo
Resumen
To simulate the effects of shear stress in regions of the vasculature prone to developing atherosclerosis, we subjected human umbilical vein endothelial cells to reversing shear stress to mimic the hemodynamic conditions at the wall of the carotid sinus, a site of complex, reversing blood flow and commonly observed atherosclerosis. We compared the effects of reversing shear stress (time-average: 1 dyn/cm2, maximum: +11 dyn/cm2, minimum: −11 dyn/cm2, 1 Hz), arterial steady shear stress (15 dyn/cm2), and low steady shear stress (1 dyn/cm2) on gene expression, cell proliferation, and monocyte adhesiveness. Microarray analysis revealed that most differentially expressed genes were similarly regulated by all three shear stress regimens compared with static culture. Comparisons of the three shear stress regimens to each other identified 138 genes regulated by low average shear stress and 22 genes regulated by fluid reversal. Low average shear stress induced increased cell proliferation compared with high shear stress. Only reversing shear stress exposure induced monocyte adhesion. The adhesion of monocytes was partially inhibited by the incubation of endothelial cells with ICAM-1 blocking antibody. Increased heparan sulfate proteoglycan expression was observed on the surface of cells exposed to reversing shear stress. Heparinase III treatment significantly reduced monocyte adhesion. Our results suggest that low steady shear stress is the major impetus for differential gene expression and cell proliferation, whereas reversing flow regulates monocyte adhesion.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Shear flow"

1

Lemée, Thomas. "Shear-flow instabilities in closed flow". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112038.

Texto completo
Resumen
Cette étude se concentre sur la compréhension de la physique des instabilités dans différents écoulements de cisaillement, particulièrement la cavité entraînée et la cavité thermocapillaire, où l'écoulement d'un fluide incompressible est assuré soit par le mouvement d’une ou plusieurs parois, soit par des contraintes d’origine thermique.Un code spectral a été validé sur le cas très étudié de la cavité entrainée par une paroi mobile. Il est démontré dans ce cas que l'écoulement transit d'un régime stationnaire à un instationnaire au-delà d'une valeur critique du nombre de Reynolds. Ce travail est le premier à donner une interprétation physique de l'évolution non monotonique du nombre de Reynolds critique en fonction du facteur d'aspect. Lorsque le fluide est entraîné par deux parois mobiles, la cavité entraînée possède un plan de symétrie particulièrement sensible. Des solutions asymétriques peuvent être observés en plus de la solution symétrique au-dessus d'une certaine valeur du nombre de Reynolds. La transition oscillatoire entre la solution symétrique et les solutions asymétriques est expliquée physiquement par les forces en compétition. Dans le cas asymétrique, l'évolution de la topologie permet à l'écoulement de rester stationnaire avec l'augmentation du nombre de Reynolds. Lorsque l'équilibre est perdu une instabilité se manifeste par l'apparition d'un régime oscillatoire dans l'écoulement asymétrique.Dans une cavité thermocapillaire rectangulaire avec une surface libre, Smith et Davis prévoient deux types d'instabilités convectives thermiques: des rouleaux longitudinaux stationnaires et des ondes hydrothermales instationnaires. L'apparition de ses instabilités a été mis en évidence à plusieurs reprises expérimentalement et numériquement. Alors que les applications impliquent souvent plus d'une surface libre, il semble qu'il y ait peu de connaissances sur l'écoulement thermocapillaire entraînée avec deux surfaces libres. Un film liquide libre soumis à des contraintes thermocapillaires possède un plan de symétrie particulier comme dans le cas de la cavité entrainée par deux parois mobiles. Une étude de stabilité linéaire avec deux profils de vitesse pour le film liquide libre est présentée avec différents nombres de Prandtl. Au-delà d'un nombre de Marangoni critique, il est découvert que ces états de base sont sensibles à quatre types d'instabilités convectives thermiques qui peuvent conserver ou briser la symétrie du système. Les mécanismes qui permettent de prédire ces instabilités sont également découverts et interpréter en fonction de la valeur du nombre de Prandtl du fluide. La comparaison avec les travaux de Smith et Davis est faite. Une simulation numérique directe permet de valider les résultats obtenus avec l'étude de stabilité de linéaire
This study focuses on the understanding of the physics of different instabilities in driven cavities, specifically the lid-driven cavity and the thermocapillarity driven cavity where flow in an incompressible fluid is driven either due to one or many moving walls or due to surface stresses that appear from surface tension gradients caused by thermal gradients. A spectral code is benchmarked on the well-studied case of the lid-cavity driven by one moving wall. In this case, It is shown that the flow transit form a steady regime to unsteady regime beyond a critical value of the Reynolds number. This work is the first to give a physical interpretation of the non-monotonic evolution of the critical Reynolds number versus the size of the cavity. When the fluid is driven by two facing walls moving in the same direction, the cavity possesses a plane of symmetry particularly sensitive. Thus, asymmetrical solutions can be observed in addition to the symmetrical solution above a certain value of the Reynolds number. The oscillatory transition between the symmetric solution and asymmetric solutions is explained physically by the forces in competition. In the asymmetric case, the change of the topology allows the flow to remain steady with increasing the Reynolds number. When the equilibrium is lost, an instability manifests by the appearance of an oscillatory regime in the asymmetric flow. In a rectangular cavity thermocapillary with a free surface, Smith and Davis found two types of thermal convective instabilities: steady longitudinal rolls and unsteady hydrothermal waves. The appearance of its instability has been highlighted repeatedly experimentally and numerically. While applications often involve more than a free surface, it seems that there is little knowledge about the thermocapillary driven flow with two free surfaces. A free liquid film possesses a particular plane of symmetry as in the case of the two-sided lid-driven cavity. A linear stability analysis for the free liquid film with two velocity profiles is presented with various Prandtl numbers. Beyond a critical Marangoni number, it is observed that these basic states are sensitive to four types of thermal convective instabilities, which can keep or break the symmetry of the system. Mechanisms that predict these instabilities are discovered and interpreted according to the value of the Prandtl number of the fluid. Comparison with the work of Smith and Davis is made. A direct numerical simulation is done to validate the results obtained with the linear stability analysis
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Marcos, Ph D. Massachusetts Institute of Technology. "Bacteria in shear flow". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65278.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 68-74).
Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent flow in rivers, streams, lakes, and oceans, as well as anthropogenic habitats such as bioreactors, heat exchangers and water supply systems. The presence of flow not only affects how bacteria are transported and dispersed at the macroscale, but also their ability to interact with their local habitat through motility and chemotaxis (the ability to sense and follow chemical gradients), in particular their foraging. Despite the ubiquitous interaction between motility, foraging and flow, almost all studies of bacterial motility have been confined to still fluids. At the small scales of a bacterium, any natural flow field (e.g. turbulence) is experienced as a linear velocity profile, or 'simple shear'. Therefore, understanding the interaction between a simple shear flow and motility is a critical step towards gaining insight on how the ambient flow favors or hinders microorganisms in their quest for food. In this thesis, I address this important gap by studying the effect of shear on bacteria, using a combination of microfluidic experiments and mathematical modeling. In chapter 2, a method is presented to create microscale vortices using a microfluidic setup specifically designed to investigate the response of swimming microorganisms. Stable, small-scale vortices were generated in the side-cavity of a microchannel by the shear stress in the main flow. The generation of a vortex was found to depend on the cavity's geometry, in particular its depth, aspect ratio, and opening width. Using video-microscopy, the position and orientation of individual microorganisms swimming in vortices of various intensities were tracked. We applied this setup to the marine bacterium Pseudoalteromonas haloplanktis. Under weak flows (shear rates < 0.1 s 1), P. haloplanktis exhibited a random swimming pattern. As the shear rate increased, P. haloplanktis became more aligned with the flow. In order to study the detailed hydrodynamic interaction between shear and bacteria, we developed a mathematical model employing resistive force theory. In general, the modeling of a bacterium requires consideration of two factors: the rotating flagellar bundle and the cell body to which the flagella are attached. To make the problem analytically tractable, we study the hydrodynamics around the head and the flagellum separately. In chapter 3, we present a combined theoretical and experimental investigation of the fluid mechanics of a helix exposed to a shear flow. In addition to classic Jeffery orbits, resistive force theory predicts a drift of the helix across streamlines, perpendicular to the shear plane. The direction of the drift is determined by the direction of the shear and the chirality of the helix. We verify this prediction experimentally using microfluidics, by exposing Leptospira biflexa flaB mutant, a non-motile strain of helix-shaped bacteria, to a plane parabolic flow. As the shear in the top and bottom halves of the microchannel has opposite sign, we predict and observe the bacteria in these two regions to drift in opposite directions. The magnitude of the drift is in good quantitative agreement with theory. We show that this setup can be used to separate microscale chiral objects. In chapter 4, a theoretical and experimental investigation of a swimming bacterium in a shear flow is presented. The presence of the cell body results in a novel phenomenon: chiral forces induce not only a lateral drift, but also a reorienting torque on swimming bacteria. For typical flagellated bacteria, the magnitude of this drift velocity is much smaller (-0.7 gm s-1) than typical swimming speeds of bacteria (-50 [mu]m s-1). However, with the addition of a head, the chirality-dependent forces that lead to a lateral drift also lead to a reorienting torque. The model based on resistive force theory predicts that the drift velocity of swimming bacteria is in the same order of magnitude as the swimming speed. Experimental observations of the motile bacteria Bacillus subtilis exposed to shear flows show good agreement with the theoretical prediction. This process is a purely passive hydrodynamic effect, as demonstrated by further experiments showing that bacteria do not behaviorally (i.e. actively) respond to shear. This newly discovered hydrodynamic reorientation can significantly affect any process that involves changes of swimming direction, so that bacterial 'steering' in a flow cannot be understood unless the effects of chiral reorientation are quantified. Because swimming and reorientation are central to the chemotaxis used by many bacteria for foraging, we expect this coupling of motility and flow to play an important role in the ecology of many bacterial species.
by Marcos.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rychkov, Igor. "Block copolymers under shear flow". 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/145457.

Texto completo
Resumen
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第11046号
理博第2824号
新制||理||1421(附属図書館)
22578
UT51-2004-J718
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)教授 吉川 研一, 教授 小貫 明, 助教授 瀬戸 秀紀
学位規則第4条第1項該当
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yato, Hiroki. "Flow pattern transition in curvilinear shear flows of viscoelastic fluids". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/131910.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Miller, Joel C. "Shear flow instabilities in viscoelastic fluids". Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/245318.

Texto completo
Resumen
This dissertation is concerned with the theoretical study of the stability of viscoelastic shear flows. It is divided into two parts: part I studies inertialess coextrusion flows at large Weissenberg number where the instabilities are due to discontinuities in the elastic properties, and part II studies the effect of elasticity on the well-known inertial instabilities of inviscid flows with inflection points. We begin part I with a previously known short-wave instability of Upper Convected Maxwell and Oldroyd–B fluids at zero Reynolds number in Couette flow. We show that if the Weissenberg number is large, the instability persists with the same growth rate when the wavelength is longer than the channel width. Intriguingly, surface tension does not modify the growth rate. Previous explanations of elastic interfacial instabilities based on the jump in normal stress at the interface cannot apply to this instability. These results are confirmed both numerically and with asymptotic methods. We then consider Poiseuille flow and show that a new class of instability exists if the interface is close to the center-line. We analyse the scalings and show that it results from a change in the boundary layer structure of the Couette instability. The growth rates can be large, and the wavespeed can be faster than the base flow advection. We are unable to simplify the equations significantly, and asymptotic results are not available, so we use numerics to verify the results. In studying these instabilities we encounter some others which we mention, but do not analyse in detail. In part II we study the effect of elasticity on the inertial instability of flows with inflection points. We show that the elasticity modifies the development of cat’s eyes. The presence of extensional flow complicates the analysis. Consequently we use the FENE–CR equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Paraschiv, Ioana. "Shear flow stabilization of Z-pinches". abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3264527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wilson, Helen Jane. "Shear flow instabilities in viscoelastic fluids". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625082.

Texto completo
Resumen
The dissertation is concerned with the stability of channel flows of viscoelastic fluids. The content is primarily theoretical. The dissertation begins with a review of instabilities observed in experiments and then attempts to elucidate possible mechanisms using linear stability theory. The first section considers a previously known interfacial instability in coextrusion flows, whose mechanism is purely elastic. This instability is investigated in different parameter régimes for an Oldroyd-B fluid. The next section generalises the study to a continuously stratified fluid, and finds that a class of models with rapid variation in their elastic properties will also show the instability. These results are confirmed both numerically and using asymptotic methods. The fundamental mechanism of this "coextrusion" instability is the same as for the interfacial instability above. The next part concerns a shear-thinning White-Metzner fluid (i.e. a viscoelastic fluid having a relaxation time that is an instantaneous function of the local shear-rate). Evidence for another instability is found where the degree of thinning in the shear viscosity is high. The mechanism for this instability is fundamentally different from that in coextrusion. In the final section of the dissertation a study of two fluids of different constitutive types but identical base-state velocity and stress profiles shows that the criterion for the "coextrusion" instability depends on properties of the model itself. The flows in question are relevant to the practical problem of extrusion of polymeric liquids. The two instabilities found may provide mechanisms for experimental observations of helical distortions of extrudates. The demonstration that the constitutive type of a model has a crucial effect on its stability may have implications for future constitutive modelling in this field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ogino, Yoshiko. "Crystallization of Polymers under Shear Flow". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/77789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Guvenen, Haldun. "Aerodynamics of bodies in shear flow". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184917.

Texto completo
Resumen
This dissertation investigates spanwise periodic shear flow past two-dimensional bodies. The flow is assumed to be inviscid and incompressible. Using singular perturbation techniques, the solution is developed for ε = L/ℓ ≪ 1, where L represents body cross-sectional size, and ℓ the period of the oncoming flow U(z). The singular perturbation analysis involves three regions: the inner, wake and outer regions. The leading order solutions are developed in all regions, and in the inner region higher order terms are obtained. In the inner region near the body, the primary flow (U₀, V₀, P₀) corresponds to potential flow past the body with a local free stream value of U(z). The spanwise variation in U(z) produces a weak O(ε) secondary flow W₁ in the spanwise direction. As the vortex lines of the upstream flow are convected downstream, they wrap around the body, producing significant streamwise vorticity in a wake region of thickness O(L) directly behind the body. This streamwise vorticity induces a net volume flux into the wake. In the outer region far from the body, a nonlifting body appears as a distribution of three-dimensional dipoles, and the wake appears as a sheet of mass sinks. Both singularity structures must be included in describing the leading outer flow. For lifting bodies, the body appears as a lifting line, and the wake appears as a sheet of shed vorticity. The trailing vorticity is found to be equal to the spanwise derivative of the product of the circulation and the oncoming flow. For lifting bodies the first higher order correction to the inner flow is the response of the body to the downwash produced by the trailing vorticity. At large distances from the body, the flow takes on remarkably simple form.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Carter, Katherine Anne. "Shear banding in polymeric fluids under large amplitude oscillatory shear flow". Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11746/.

Texto completo
Resumen
In this thesis, I theoretically explore shear banding of entangled linear polymer solutions and melts in large amplitude oscillatory shear strain (LAOStrain) and stress (LAOStress) protocols. This work moves beyond that of Moorcroft and Fielding [2013, 2014] who showed time-dependent shear banding in shear startup and step stress protocols. These protocols are only transiently time-dependent. LAOStrain and LAOStress have a sustained time-dependence. I consider the criteria derived in [Moorcroft and Fielding 2013] to predict the onset of shear banding in the transient material response for shear startup and step stress, relative to the triggers of shear banding in LAOStrain and LAOStress. I find that stability to the formation of shear banded flow in the LAOS protocols can be understood - to a good approximation - by the known triggers of shear banding in these simpler transiently time-dependent protocols. I employ the Rolie-Poly (RP) model [Graham et al. 2003] to investigate the existence of shear banding in LAOStrain and LAOStress over a wide range of imposed amplitudes and frequencies. I find shear banding to occur in the alternance state (where time-translational invariance is achieved), even in materials that are known to remain homogeneous at the steady state. For each protocol I consider the relative influence of the constraint-release stress relaxation RP parameter and entanglement number (Z) on the intensity of shear banding across the phase space. I find significant shear banding to occur in both LAOStrain and LAOStress for experimentally-realistic values of Z, both in materials that shear band to steady state, and those that don't. The main results of these investigations are submitted for publication in the Journal of Rheology [Carter et al. 2016]. Finally, I consider the shortcomings of using a single-mode RP model when characterising the full chain dynamics of entangled linear polymers in flow. I employ a multimode approach and fit a power-law spectrum to experimental linear rheology data and investigate time-dependent shear banding in the presence of higher-order relaxation dynamics. For this, I use the simpler shear startup protocol and investigate the limits under which significant shear banding exists for well-entangled polymers and discuss the possible importance of considering edge fracture as a mechanism for shear banding.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Shear flow"

1

American Society of Mechanical Engineers. Winter Meeting. Shear flow: Structure interaction phenomena. New York, N.Y. (345 E. 47th St., New York): American Society of Mechanical Engineers, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sarkar, Sutanu. Compressible homogeneous shear: simulation and modeling. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Jean-Paul, Dussauge, ed. Turbulent shear layers in supersonic flow. Woodbury, N.Y: American Institute of Physics, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jean-Paul, Dussauge, ed. Turbulent shear layers in supersonic flow. 2a ed. New York: Springer, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Smits, Alexander J. Turbulent shear layers in supersonic flow. 2a ed. New York: Springer, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Landslide Hazard Reduction Program (Geological Survey), ed. A model for grain flow and debris flow. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

United States. National Aeronautics and Space Administration., ed. Vorticity dynamics of inviscid shear layers. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

1957-, Erlebacher Gordon, Hussaini M. Yousuff y Langley Research Center, eds. Compressible homogeneous shear: Simulation and modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Messiter, Arthur Henry. Large-amplitude long-wave instability of a supersonic shear layer. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion], 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

1948-, Speziale C. G. y Langley Research Center, eds. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Shear flow"

1

Gooch, Jan W. "Shear Flow". En Encyclopedic Dictionary of Polymers, 657. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lesieur, Marcel. "Shear-Flow Turbulence". En Turbulence in Fluids, 105–33. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-010-9018-6_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Münstedt, Helmut y Friedrich Rudolf Schwarzl. "Shear Rheology". En Deformation and Flow of Polymeric Materials, 363–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55409-4_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Acharya, M. y M. P. Escudier. "Turbulent Flow Over Mesh Roughness". En Turbulent Shear Flows 5, 176–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71435-1_16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Andersson, H. I. y R. Kristoffersen. "Turbulence Statistics of Rotating Channel Flow". En Turbulent Shear Flows 9, 53–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78823-9_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boiko, Andrey V., Alexander V. Dovgal, Genrih R. Grek y Victor V. Kozlov. "Excitation of shear flow disturbances". En Physics of Transitional Shear Flows, 177–205. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2498-3_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mudford, N. R. y R. W. Bilger. "Nonequilibrium Chemistry in an Isothermal Turbulent Flow". En Turbulent Shear Flows 4, 355–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_29.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gartshore, I. S. "Introduction to Papers on Free Turbulent Flow". En Turbulent Shear Flows 4, 121–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Larousse, A., R. Martinuzzi y C. Tropea. "Flow Around Surface-Mounted, Three-Dimensional Obstacles". En Turbulent Shear Flows 8, 127–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77674-8_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Byggstøyl, S. y B. F. Magnussen. "A Model for Flame Extinction in Turbulent Flow". En Turbulent Shear Flows 4, 381–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_31.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Shear flow"

1

FFOWC, J. "Control of unsteady flow". En 2nd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

ARKILLIC, ERROL y KENNETH BREUER. "Gaseous flow in small channels". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3270.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

STRYKOWSKI, P. y A. KROTHAPALLI. "The countercurrent mixing layer - Strategies for shear-layer control". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

CORNELIUS, KENNETH y GERALD LUCIUS. "Thrust vectoring control from underexpanded asymmetric nozzles". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

WIEGEL, M. y R. WLEZIEN. "Acoustic receptivity of laminar boundary layers over wavy walls". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3280.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

KLEIFGES, K. y D. DOLLING. "Control of unsteady shock-induced turbulent boundary layer separation upstream of blunt fins". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

LEWIS, C. y M. GHARIB. "The effect of axial oscillation on a cylinder wake". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

AISSI, S. y L. BERNAL. "PIV investigation of an aperiodic forced mixing layer". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

LEU, TZONG-SHYNG y CHIH-MING HO. "Free shear layer control and its application to fan noise". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

JACOBS, J., R. JAMES, C. RATLIFF y A. GLEZER. "Turbulent jets induced by surface actuators". En 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3243.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Shear flow"

1

Walker, J. D. Shear Layer Breakdown in Compressible Flow. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1995. http://dx.doi.org/10.21236/ada303627.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Glegg, Stewart A. Distorted Turbulent Flow in a Shear Layer. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2014. http://dx.doi.org/10.21236/ada600333.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kumar, R. y D. P. Edwards. Interfacial shear modeling in two-phase annular flow. Office of Scientific and Technical Information (OSTI), julio de 1996. http://dx.doi.org/10.2172/350939.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chu, M. S., J. M. Greene, T. H. Jensen, R. L. Miller, A. Bondeson, R. W. Johnson y M. E. Mauel. Effect of toroidal plasma flow and flow shear on global MHD modes. Office of Scientific and Technical Information (OSTI), enero de 1995. http://dx.doi.org/10.2172/10118062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hahm, T. S. y K. H. Burrell. Role of flow shear in enhanced core confinement regimes. Office of Scientific and Technical Information (OSTI), marzo de 1996. http://dx.doi.org/10.2172/220600.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tajima, T., W. Horton, J. Q. Dong y Y. Kishimoto. Shear flow effects on ion thermal transport in tokamaks. Office of Scientific and Technical Information (OSTI), marzo de 1995. http://dx.doi.org/10.2172/42486.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Glezer, Ari. Shear Flow Control Using Synthetic Jet Fluidic Actuator Technology. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada368201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Chang, C. P., H. C. Kuo y C. H. Liu. Convection and Shear Flow in TC Development and Intensification. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2009. http://dx.doi.org/10.21236/ada531227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hahm, T. S. Flow shear induced Compton scattering of electron drift instability. Office of Scientific and Technical Information (OSTI), febrero de 1992. http://dx.doi.org/10.2172/5746326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chang, C. P., H. C. Kuo y C. H. Liu. Convection and Shear Flow in TC Development and Intensification. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada574050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía