Literatura académica sobre el tema "Shaft hub"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Shaft hub".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Shaft hub"
Vetter, Sebastian, Erhard Leidich, Kai Neikes, Berthold Schlecht y Alexander Hasse. "The survival probability of shafts and shaft-hub connections". Engineering Failure Analysis 103 (septiembre de 2019): 195–202. http://dx.doi.org/10.1016/j.engfailanal.2019.05.007.
Texto completoCroccolo, D. y N. Vincenzi. "Stress concentration factors in compression—fit couplings". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, n.º 6 (1 de junio de 2010): 1143–52. http://dx.doi.org/10.1243/09544062jmes1881.
Texto completoLee, Dong-Hyung, Ha-Young Choi, Seok-Jin Kwon y Jeong-Won Seo. "Optimization of Contact Edge Profile for Minimizing Contact Pressure in a Press-fitted Shaft". MATEC Web of Conferences 165 (2018): 22029. http://dx.doi.org/10.1051/matecconf/201816522029.
Texto completoDörr, Florian, Michael Funk, Mathias Liewald, Hansgeorg Binz y Marco Savino. "Determination of Friction Coefficients of Interstice of a Shaft-Hub-Connection Manufactured by Lateral Extrusion". Advanced Materials Research 966-967 (junio de 2014): 659–70. http://dx.doi.org/10.4028/www.scientific.net/amr.966-967.659.
Texto completoYang, Guang Xue, Qiang Li y Ji Long Xie. "Experiment Research on the Influence of Fretting on Crack Propagation". Advanced Materials Research 228-229 (abril de 2011): 617–20. http://dx.doi.org/10.4028/www.scientific.net/amr.228-229.617.
Texto completoRadi, E., L. Lanzoni, A. Strozzi y E. Bertocchi. "Shaft-hub press fit subjected to bending couples: Analytical evaluation of the shaft-hub detachment couple". Applied Mathematical Modelling 50 (octubre de 2017): 135–60. http://dx.doi.org/10.1016/j.apm.2017.05.018.
Texto completoZiaei, Masoud. "Bending Stresses and Deformations in Prismatic Profiled Shafts with Noncircular Contours Based on Higher Hybrid Trochoids". Applied Mechanics 3, n.º 3 (23 de agosto de 2022): 1063–79. http://dx.doi.org/10.3390/applmech3030060.
Texto completoEsebeck, G. v., M. Kising y U. Neuhof. "Investigation on Ceramic–Metal Joints for Shaft–Hub Connections in Gas Turbines". Journal of Engineering for Gas Turbines and Power 118, n.º 3 (1 de julio de 1996): 626–31. http://dx.doi.org/10.1115/1.2816694.
Texto completoCroccolo, D. y N. Vincenzi. "A generalized theory for shaft—hub couplings". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, n.º 10 (29 de junio de 2009): 2231–39. http://dx.doi.org/10.1243/09544062jmes1437.
Texto completoLeidich, E., F. Reiß y R. Schreiter. "Investigations of hypocycloidal shaft and hub connections". Materialwissenschaft und Werkstofftechnik 48, n.º 8 (agosto de 2017): 760–66. http://dx.doi.org/10.1002/mawe.201700013.
Texto completoTesis sobre el tema "Shaft hub"
Grossmann, Christoph. "Fretting fatigue of shape optimised polygon-shaft-hub connections". [S.l.] : [s.n.], 2006. http://opus.kobv.de/tuberlin/volltexte/2007/1519.
Texto completoShen, Longjiang [Verfasser]. "Fretting and plain fatigue competition mechanism and prediction in spline shaft-hub connection / Longjiang Shen". Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2012. http://d-nb.info/1021671967/34.
Texto completoJakel, Roland. "Analyzing a bolted, conical hub-shaft-connection with finite friction contact in Creo Simulate 3.0: Best practices for working with large displacement analysis, bolt preloads and finite friction contact". Technische Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A21441.
Texto completoThe presentation describes how to analyze a flywheel with axially bolted hub-shaft- connection using a conical press fit with help of the finite friction contact model in Creo Simulate 3.0. Since Creo Simulate 3.0 from PTC offers a finite friction contact model implementation just for large displacement analysis, but not for simple analyses with small displacements, the user has to work around a couple of code specific limitations. Best practices are proposed how to do this. Special attention is paid on bolt modeling and preload adjustment. Analysis results are compared with analytical solutions.
Lněnička, Martin. "Konstrukční úprava náboje předního kola formulového vozu". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229852.
Texto completoHofmann, Stefan. "Untersuchungen zur Ermüdungsfestigkeit von Pressverbindungen". Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-213676.
Texto completoHofmann, Stefan. "Untersuchungen zur Ermüdungsfestigkeit von Pressverbindungen". Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2016. https://monarch.qucosa.de/id/qucosa%3A20597.
Texto completoLätzer, Michael. "Füge- und Übertragungsverhalten torsionsbelasteter Stahl-Aluminium-Rändelpressverbindungen". Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-200348.
Texto completoThe present thesis provides analytical, numerical and experimental fundamental studies for the joining behaviour and the transmission behaviour of a friction and form closure steel-aluminum knurled interference fit. The special feature of this connection is a knurled and oversize hard steel shaft, longitudinally pressed in a soft aluminum hub with a circular bore. The most important parameter for the joining process is the shaft chamfer angle φ. Due to the shaft chamfer angle φ the material of the hub will be formed or cutted during the joining process. By using the relative strength, the quotient of push out force and joining force who describes the joint strength, a first quality parameter for a precise selection of steel-aluminum knurled interference fit has been derived. The description of the experimentally determined torque - twisting angle – curves has shown areas of design criterion and mechanical breakdown. The maximum transmittable torque is achieved by reaching the shearing stress of the knurls in the hub - mechanical breakdown τ S. Similar to the joining and the push out behaviour, the positive influence of the shaft chamfer angle φ is also shown at the transmittable torque. Furthermore, knurled interference fits joined by forming can transmit higher torques of about 40% than interference fits joined by cutting due to the material hardening. The mechanical-physical model for calculating the static transmittable torque is based on the serration connection. Thus, the torque at the design criterion and the maximum transmittable torque at the mechanical breakdown can be found. The consideration of the forming or cutting joining process is described as a function of the shaft chamfer angle φ using the so-called angle-based plastic strain ε plRPV
Lätzer, Michael. "Füge- und Übertragungsverhalten torsionsbelasteter Stahl-Aluminium-Rändelpressverbindungen". Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20428.
Texto completoThe present thesis provides analytical, numerical and experimental fundamental studies for the joining behaviour and the transmission behaviour of a friction and form closure steel-aluminum knurled interference fit. The special feature of this connection is a knurled and oversize hard steel shaft, longitudinally pressed in a soft aluminum hub with a circular bore. The most important parameter for the joining process is the shaft chamfer angle φ. Due to the shaft chamfer angle φ the material of the hub will be formed or cutted during the joining process. By using the relative strength, the quotient of push out force and joining force who describes the joint strength, a first quality parameter for a precise selection of steel-aluminum knurled interference fit has been derived. The description of the experimentally determined torque - twisting angle – curves has shown areas of design criterion and mechanical breakdown. The maximum transmittable torque is achieved by reaching the shearing stress of the knurls in the hub - mechanical breakdown τ S. Similar to the joining and the push out behaviour, the positive influence of the shaft chamfer angle φ is also shown at the transmittable torque. Furthermore, knurled interference fits joined by forming can transmit higher torques of about 40% than interference fits joined by cutting due to the material hardening. The mechanical-physical model for calculating the static transmittable torque is based on the serration connection. Thus, the torque at the design criterion and the maximum transmittable torque at the mechanical breakdown can be found. The consideration of the forming or cutting joining process is described as a function of the shaft chamfer angle φ using the so-called angle-based plastic strain ε plRPV.
Jakel, Roland. "Das neue Kontaktmodell in Mechanica WF 4.0 mit Reibung : Theoretische Grundlagen und Anwendungsbeispiele". Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900787.
Texto completoChang, Shu-Hsuan y 張書軒. "Stress Analysis of Interference Fitted Shaft-Hub Joints". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/47mvmf.
Texto completo國立臺北科技大學
機電整合研究所
100
Interference-fit used widely in current industry, shaft and hub are two main mechanical components. The article is to study the stress state of shaft and hub in interference-fit situation, using 3D graphics software modeling and matching computer-aided engineering (CAE) software analysis. This study divided into static and dynamic parts. Static analysis for direct display interference-fit status, the main purpose is to reduce the stress concentration at both ends of shaft and hub, through changing the geometric shape of shaft ends of the research is able to effectively reduce the stress concentration effect and maintain the amount of torque. Dynamic analysis for simulation of the actual processing and assembly shaft by exert force pressed into the hub, using analysis software to calculate the reaction and use of heating and cooling the shaft and hub, come to understand at which temperature difference conductive to assembly. By the analysis result was informed that the distribution effect of stress concentration as the shape changes, contact pressure will affect the amount of torque. Stepped shaft and rounded shaft better ways to improve the stress concentration effect, the ratio of stepped shaft dc/d below 0.87 is better to reduce stress concentration, the bore and outside diameter ratio d/D should be avoided as far as possible too small, otherwise it will ineffective to heating assembly.
Libros sobre el tema "Shaft hub"
Huan jing bian hua he quan shi zhuan yi: Zhi du, bo yi he ying dui = Environmental changes and power shift : institutions, negotiations and polices. Shanghai: Shanghai ren min chu ban she, 2011.
Buscar texto completoWen ming peng zhuang yu fan shi zhuan bian: 19 shi ji lai Hua Deguo ren yu Zhongguo = Civilization collision and paradigm shift : research on Germans coming to China in the 19th century. Beijing Shi: She hui ke xue wen xian chu ban she, 2018.
Buscar texto completoMcDougal, Topher L. Trade Network Splintering and Ethnic Homogenization in Liberia and Sierra Leone. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198792598.003.0005.
Texto completoHu Pegues, Juliana. Space-Time Colonialism. University of North Carolina Press, 2020. http://dx.doi.org/10.5149/northcarolina/9781469656182.001.0001.
Texto completoVerdier, Pierre-Hugues. Global Banks on Trial. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190675776.001.0001.
Texto completoCapítulos de libros sobre el tema "Shaft hub"
Dörr, Florian y Mathias Liewald. "Joining of a Shaft-Hub Connection by Lateral Extrusion". En 60 Excellent Inventions in Metal Forming, 295–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_45.
Texto completoDönges, Benjamin, Maximilian Rolfes y Stefan Buchkremer. "Spring Loaded Rotor Shafts as New Flexible Shaft Hub Joint for E-Rotors". En Proceedings, 56–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-61515-7_7.
Texto completoSuchý, Lukáš y Alexander Hasse. "Fatigue of Multiaxially Loaded Shaft-Hub Connection Under Different Load Parameters". En Lecture Notes in Mechanical Engineering, 473–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9893-7_34.
Texto completo"Shaft-to-Hub Connections". En Machine Elements, 83–118. CRC Press, 2007. http://dx.doi.org/10.1201/9781420009491-11.
Texto completo"Shaft-to-Hub Connections". En Mechanical Engineering Series, 67–102. CRC Press, 2007. http://dx.doi.org/10.1201/9781420009491.ch5.
Texto completo"Detachable Fastenings for Shaft and Hub". En Analysis and Design of Machine Elements, 91–103. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2019. http://dx.doi.org/10.1002/9781119276081.ch4.
Texto completo"Fits Between the Shaft and the Hub and Fits Between the Hub and the Shaft". En Gear Motor Handbook, 234–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79589-3_10.
Texto completoLiu, Weizhen y Fangcheng Li. "Technical research on the rotor shaft integrated with rotor hub". En Power Engineering, 23–28. CRC Press, 2016. http://dx.doi.org/10.1201/9781315386829-6.
Texto completoLubke, K. "Virtual gauge for splined shaft-hub joints – Quality inspection and assembly of involute splines in the context of Industry 4.0". En International Conference on Gears 2019, 1497–508. VDI Verlag, 2019. http://dx.doi.org/10.51202/9783181023556-1497.
Texto completoFinucane, Greg, Adith Mohan y Perminder S. Sachdev. "Neuropsychiatric services in Australia and New Zealand". En Oxford Textbook of Neuropsychiatry, editado por Niruj Agrawal, Rafey Faruqui y Mayur Bodani, 531–36. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198757139.003.0045.
Texto completoActas de conferencias sobre el tema "Shaft hub"
Bhatta, Ravi y Wendy Reffeor. "Comparison of Load Carrying Capacity of Three and Four Lobed Polygonal Shaft and Hub Connection for Constant Grinding Diameter". En ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65745.
Texto completoWilson, L. A., S. Azarm y T. V. Kotras. "Optimizaton-Based Design of Hub-and-Shaft Assemblies for Dual-Wheel Excavators". En ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0431.
Texto completoYOUNG, L. y D. GRAHAM. "Experimental investigation of rotorcraft hub and shaft fairing drag reduction". En 4th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1783.
Texto completoStrozzi, Antonio, Andrea Baldini, Matteo Giacopini, Enrico Bertocchi y Luca Bertocchi. "Stress Concentrations at the Rounded Edges of a Shaft-Hub Interference Fit Expressed in Terms of a Coefficient Normalizing the Coupling Geometry and the Young’s Modulus Effects". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87715.
Texto completoMarshall, M. B., R. Lewis, R. S. Dwyer-Joyce, F. Demilly y Y. Flament. "Ultrasonic Measurement of Wheel Hub/Axle Interference Fit Pressures". En World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63454.
Texto completoBuschenhenke, Frank, Michael Hofmann, Thomas Seefeld y Frank Vollertsen. "Distortion and residual stresses in laser beam welded shaft-hub joints". En ICALEO® 2010: 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5062055.
Texto completoSong, Wei, Zhanchi Liu y Qi Lu. "A study on effective diameter of shrink-fitted shaft-hub connection". En 2017 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2017. http://dx.doi.org/10.1109/icamechs.2017.8316484.
Texto completoKiss, Tibor, Wing-Fai Ng y Larry D. Mitchell. "A New Shaft Coupling Design for a High-Speed Rotor Wheel". En ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0136.
Texto completoMeissner, Robert, Mathias Liewald, André Weiss y Tahsin Deliktas. "Novel approach in cold forging for efficient manufacturing of shaft-hub-assemblies". En PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112588.
Texto completoCeyrowsky, Thomas y Andre Hildebrandt. "Numerical Investigation of Effects of Different Hub Tip Diameter Ratios on Aerodynamic Performance of Single Shaft Multistage Centrifugal Compression Systems". En ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68318.
Texto completo