Literatura académica sobre el tema "Serrin's problem"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Serrin's problem".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Serrin's problem"

1

Araúz, C., A. Carmona y A. M. Encinas. "Discrete Serrin's problem". Linear Algebra and its Applications 468 (marzo de 2015): 107–21. http://dx.doi.org/10.1016/j.laa.2014.01.038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ciraolo, Giulio y Rolando Magnanini. "A note on Serrin's overdetermined problem". Kodai Mathematical Journal 37, n.º 3 (octubre de 2014): 728–36. http://dx.doi.org/10.2996/kmj/1414674618.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Jiang, Zaihong, Li Li y Wenbo Lu. "Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions". Discrete & Continuous Dynamical Systems - S 14, n.º 12 (2021): 4231. http://dx.doi.org/10.3934/dcdss.2021126.

Texto completo
Resumen
<p style='text-indent:20px;'>In this paper, we study axisymmetric homogeneous solutions of the Navier-Stokes equations in cone regions. In [James Serrin. The swirling vortex. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 271(1214):325-360, 1972.], Serrin studied the boundary value problem in half-space minus <inline-formula><tex-math id="M1">\begin{document}$ x_3 $\end{document}</tex-math></inline-formula>-axis, and used it to model the dynamics of tornado. We extend Serrin's work to general cone regions minus <inline-formula><tex-math id="M2">\begin{document}$ x_3 $\end{document}</tex-math></inline-formula>-axis. All axisymmetric homogeneous solutions of the boundary value problem have three possible patterns, which can be classified by two parameters. Some existence results are obtained as well.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Magnanini, Rolando y Giorgio Poggesi. "Serrin's problem and Alexandrov's Soap Bubble Theorem: enhanced stability via integral identities". Indiana University Mathematics Journal 69, n.º 4 (2020): 1181–205. http://dx.doi.org/10.1512/iumj.2020.69.7925.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Feldman, William M. "Stability of Serrin's Problem and Dynamic Stability of a Model for Contact Angle Motion". SIAM Journal on Mathematical Analysis 50, n.º 3 (enero de 2018): 3303–26. http://dx.doi.org/10.1137/17m1143009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Magnanini, Rolando y Giorgio Poggesi. "Interpolating estimates with applications to some quantitative symmetry results". Mathematics in Engineering 5, n.º 1 (2022): 1–21. http://dx.doi.org/10.3934/mine.2023002.

Texto completo
Resumen
<abstract><p>We prove interpolating estimates providing a bound for the oscillation of a function in terms of two $ L^p $ norms of its gradient. They are based on a pointwise bound of a function on cones in terms of the Riesz potential of its gradient. The estimates hold for a general class of domains, including, e.g., Lipschitz domains. All the constants involved can be explicitly computed. As an application, we show how to use these estimates to obtain stability for Alexandrov's Soap Bubble Theorem and Serrin's overdetermined boundary value problem. The new approach results in several novelties and benefits for these problems.</p></abstract>
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Beck, Lisa, Miroslav Bulíček y Erika Maringová. "Globally Lipschitz minimizers for variational problems with linear growth". ESAIM: Control, Optimisation and Calculus of Variations 24, n.º 4 (octubre de 2018): 1395–413. http://dx.doi.org/10.1051/cocv/2017065.

Texto completo
Resumen
We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos. Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496].
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shahgholian, Henrik. "Diversifications of Serrin's and related symmetry problems". Complex Variables and Elliptic Equations 57, n.º 6 (junio de 2012): 653–65. http://dx.doi.org/10.1080/17476933.2010.504848.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ciraolo, Giulio, Rolando Magnanini y Vincenzo Vespri. "Hölder stability for Serrin’s overdetermined problem". Annali di Matematica Pura ed Applicata (1923 -) 195, n.º 4 (8 de julio de 2015): 1333–45. http://dx.doi.org/10.1007/s10231-015-0518-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ciraolo, Giulio y Luigi Vezzoni. "On Serrin’s overdetermined problem in space forms". manuscripta mathematica 159, n.º 3-4 (19 de octubre de 2018): 445–52. http://dx.doi.org/10.1007/s00229-018-1079-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Serrin's problem"

1

Poggesi, Giorgio. "The Soap Bubble Theorem and Serrin's problem: quantitative symmetry". Doctoral thesis, 2019. http://hdl.handle.net/2158/1151383.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Serries, Christoph [Verfasser]. "Die Bedeutung der intrinsischen Motivation in Prinzipal-Agent-Beziehungen am Beispiel der Beratungsstellen kirchlicher Wohlfahrtsverbände / vorgelegt von Christoph Serries". 2005. http://d-nb.info/976709481/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Serrin's problem"

1

Pinchover, Yehuda. "I.2. The Dirichlet Problem – Theory". En James Serrin. Selected Papers, 117–208. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0845-3_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Peral, Ireneo. "I.3. The Dirichlet Problem – Surveys". En James Serrin. Selected Papers, 209–40. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0845-3_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cavallina, Lorenzo y Toshiaki Yachimura. "Symmetry Breaking Solutions for a Two-Phase Overdetermined Problem of Serrin-Type". En Trends in Mathematics, 433–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87502-2_44.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía