Literatura académica sobre el tema "Sensory input"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Sensory input".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Sensory input"
Bui, Tuan V. y Robert M. Brownstone. "Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study". Journal of Neurophysiology 113, n.º 7 (abril de 2015): 2824–39. http://dx.doi.org/10.1152/jn.00866.2014.
Texto completoSantos, Bruno A., Rogerio M. Gomes, Xabier E. Barandiaran y Phil Husbands. "Active Role of Self-Sustained Neural Activity on Sensory Input Processing: A Minimal Theoretical Model". Neural Computation 34, n.º 3 (17 de febrero de 2022): 686–715. http://dx.doi.org/10.1162/neco_a_01471.
Texto completoFadli, Muhammad, Wahyuni Wahyuni y Farid Rahman. "Penatalaksanaan Fisioterapi pada Pasien Diabetic Peripheral Neuropaty dengan Metode Sensorimotor Exercise". Ahmar Metastasis Health Journal 1, n.º 3 (31 de diciembre de 2021): 92–100. http://dx.doi.org/10.53770/amhj.v1i3.53.
Texto completoUgawa, Yoshikazu. "Sensory input and basal ganglia". Rinsho Shinkeigaku 52, n.º 11 (2012): 862–65. http://dx.doi.org/10.5692/clinicalneurol.52.862.
Texto completoMao, Yu-Ting, Tian-Miao Hua y Sarah L. Pallas. "Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas". Journal of Neurophysiology 105, n.º 4 (abril de 2011): 1558–73. http://dx.doi.org/10.1152/jn.00407.2010.
Texto completoHenn, V. "Sensory Input Modifying Central Motor Actions". Stereotactic and Functional Neurosurgery 49, n.º 5 (1986): 251–55. http://dx.doi.org/10.1159/000100183.
Texto completoFranosch, Jan-Moritz P., Sebastian Urban y J. Leo van Hemmen. "Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions". Neural Computation 25, n.º 12 (diciembre de 2013): 3113–30. http://dx.doi.org/10.1162/neco_a_00520.
Texto completoEtesami, Jalal y Philipp Geiger. "Causal Transfer for Imitation Learning and Decision Making under Sensor-Shift". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 06 (3 de abril de 2020): 10118–25. http://dx.doi.org/10.1609/aaai.v34i06.6571.
Texto completoHavrylovych, Mariia y Valeriy Danylov. "Research of autoencoder-based user biometric verification with motion patterns". System research and information technologies, n.º 2 (30 de agosto de 2022): 128–36. http://dx.doi.org/10.20535/srit.2308-8893.2022.2.10.
Texto completoStolz, Thomas, Max Diesner, Susanne Neupert, Martin E. Hess, Estefania Delgado-Betancourt, Hans-Joachim Pflüger y Joachim Schmidt. "Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects". Journal of Neurophysiology 122, n.º 6 (1 de diciembre de 2019): 2388–413. http://dx.doi.org/10.1152/jn.00196.2019.
Texto completoTesis sobre el tema "Sensory input"
McNair, Nicolas A. "Input-specificity of sensory-induced neural plasticity in humans". Thesis, University of Auckland, 2008. http://hdl.handle.net/2292/3285.
Texto completoNargis, Sultana Mahbuba. "Sensory Input and Mental Imagery in Second Language Acquisition". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418370678.
Texto completoKim, Jung-Kyong. "Sensory substitution learning using auditory input: Behavioral and neural correlates". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96695.
Texto completoLa substitution sensorielle réfère à la capacité de remplacer une entrée sensorielle par une autre. Ce concept, initialement développé pour aider les personnes aveugles, offre une opportunité scientifique pour étudier l'apprentissage perceptuel à travers plusieurs modalités sensorielles et la plasticité neurale. La présente dissertation utilise une technique qui transforme la vision en son pour examiner l'apprentissage de la substitution sensorielle. Quatre études ont testé les hypothèses que les représentations mentales de l'information spatiale telles que des formes abstraites sont basées sur l'implication de régions cérébrales communes indépendamment de modalités sensorielles. L'étude 1 avait pour but de développer un paradigme d'apprentissage de la substitution audio-visuelle. Nous avons examiné le taux minimal d'apprentissage nécessaire pour identifier les images visuelles en utilisant le son, et les effets d'un entraînement plus intensif sur une large gamme de stimuli pour tester l'hypothèse que la substitution sensorielle serait basée sur une loi d'apprentissage généralisé à travers plusieurs modalités. L'étude 2 était une adaptation de l'étude 1 utilisant l'imagerie par résonance magnétique fonctionnelle (IRMf). Les sujets étaient scannés avant et après un entraînement à une tâche pendant laquelle une forme codée sonore devait être appariée à une forme abstraite présentée visuellement. Nous faisions l'hypothèse que suite à l'entraînement, l'exposition sonore conduirait à un recrutement visuel. L'étude 3 a examiné l'apprentissage pour transformer le toucher en son. Des sujets voyants avaient les yeux bandés et étaient entraînés pour reconnaitre des formes tactiles utilisant des formes codées sonores et testées sur une tâche d'appariement. Nous avons aussi testé le transfert à la vision après entraînement. Nous avons prédit que les formes pourraient être transportées à travers les modalités sensorielles. L'étude 4 était une adaptation en IRMf de l'étude 3. Les sujets étaient scannés avant et après un entraînement pendant une tâche dans laquelle une forme codée sonore était appariée à une forme présentée tactilement. Nous faisions l'hypothèse que des entrées non visuelles conduiraient à un recrutement visuel. Les résultats ont montré que les personnes voyantes ont appris à extraire des modes visuels ou tactiles à partir d'entrées auditives. Cet apprentissage était généralisable à travers les stimuli, dans et à travers les modalités, suggérant une représentation mentale abstraite des formes. L'apprentissage de formes auditives était associé à un changement dans le réseau fonctionnel entre le cortex auditif et le complexe latero-occipital (CLO), une région connue pour le traitement visuel des formes. L'accès auditif au CLO supporte la notion que la spécificité sensorielle du cerveau n'est pas déterminée par la nature des stimuli mais plutôt par le traitement requis pour exécuter la tache.
Lovell, Nathan y N/A. "Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots". Griffith University. School of Information and Communication Technology, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20070911.152447.
Texto completoXin, Yifei. "Exploring the Chinese Room: Parallel Sensory Input in Second Language Learning". University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333762798.
Texto completoLovell, Nathan. "Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots". Thesis, Griffith University, 2006. http://hdl.handle.net/10072/367107.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Full Text
Ortman, Robert L. "Sensory input encoding and readout methods for in vitro living neuronal networks". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44856.
Texto completoChakrabarty, Arnab. "Role of sensory input in structural plasticity of dendrites in adult neuronal networks". Diss., lmu, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-155241.
Texto completoZhao, Yifan. "Language Learning through Dialogs:Mental Imagery and Parallel Sensory Input in Second Language Learning". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396634043.
Texto completoMacBride, Claire Ann MacBride. "Mental Imagery as a Substitute for Parallel Sensory Input in the Field of SLA". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525379740507044.
Texto completoLibros sobre el tema "Sensory input"
Proebster, Walter E. Peripherie von Informationssystemen: Technologie und Anwendung : Eingabe, Tastatur, Sensoren, Sprache etc. : Ausgabe, Drucker, Bildschirm, Anzeigen etc. : externe Speicher, Magnetik, Optik etc. Berlin: Springer-Verlag, 1987.
Buscar texto completoAIPR Workshop (26th 1997 Washington, D.C.). Exploiting new image sources and sensors: 26th AIPR Workshop, 15-17 October 1997, Washington, D.C. Editado por Selander J. Michael 1952-, Society of Photo-optical Instrumentation Engineers. y AIPR Executive Committee. Bellingham, Wash: SPIE, 1998.
Buscar texto completoTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Buscar texto completoTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Buscar texto completoTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Buscar texto completoTyagi, Amit y Shamila Mohammed. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2020.
Buscar texto completoTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Buscar texto completoStoneley, Sarah y Simon Rinald. Sensory loss. Editado por Patrick Davey y David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0047.
Texto completoStrayer. Lose Weight by Decreasing Sensory Input: A Revolutionary Mind-Body Approach. Dorrance Publishing Co., Inc., 2004.
Buscar texto completoHeller, Sharon. Yoga Bliss: How Sensory Input in Yoga Calms & Organizes the Nervous System. Symmetry, 2023.
Buscar texto completoCapítulos de libros sobre el tema "Sensory input"
Stein, Wolfgang. "Sensory Input to Central Pattern Generators". En Encyclopedia of Computational Neuroscience, 2668–76. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_465.
Texto completoJohansson, Roland S. "Sensory Input and Control of Grip". En Novartis Foundation Symposia, 45–63. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470515563.ch4.
Texto completoStein, Wolfgang. "Sensory Input to Central Pattern Generators". En Encyclopedia of Computational Neuroscience, 1–11. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_465-3.
Texto completoStein, Wolfgang. "Sensory Input to Central Pattern Generators". En Encyclopedia of Computational Neuroscience, 1–10. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-7320-6_465-4.
Texto completoStrösslin, Thomas, Christophe Krebser, Angelo Arleo y Wulfram Gerstner. "Combining Multimodal Sensory Input for Spatial Learning". En Artificial Neural Networks — ICANN 2002, 87–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_15.
Texto completoBullock, Theodore H. "The Comparative Neurology of Expectation: Stimulus Acquisition and Neurobiology of Anticipated and Unanticipated Input". En Sensory Biology of Aquatic Animals, 269–84. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3714-3_10.
Texto completoBereiter, D. A., E. J. DeMaria, W. C. Engeland y D. S. Gann. "Endocrine Responses to Multiple Sensory Input Related to Injury". En Advances in Experimental Medicine and Biology, 251–63. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2064-5_20.
Texto completoClark, Lauren. "Sensory Awareness – Understanding Your Unique Brain Response to Sensory Input from the World Around You". En Das menschliche Büro - The human(e) office, 179–85. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33519-9_9.
Texto completoPolitis, Dionysios, Rafail Tzimas, Dimitrios Margounakis, Veljko Aleksić y Nektarios-Kyriakos Paris. "User Experience and Music Perception in Broadcasts: Sensory Input Classification". En New Realities, Mobile Systems and Applications, 410–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96296-8_37.
Texto completoDi Ferdinando, Andrea y Domenico Parisi. "Internal Representations of Sensory Input Reflect the Motor Output with Which Organisms Respond to the Input". En Seeing, Thinking and Knowing, 115–41. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2081-3_6.
Texto completoActas de conferencias sobre el tema "Sensory input"
Evans, Richard, Matko Bošnjak, Lars Buesing, Kevin Ellis, David Pfau, Pushmeet Kohli y Marek Sergot. "Making Sense of Raw Input (Extended Abstract)". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/799.
Texto completoHill, Chris, Casey Lee Hunt, Sammie Crowder, Brett Fiedler, Emily B. Moore y Ann Eisenberg. "Investigating Sensory Extensions as Input for Interactive Simulations". En TEI '23: Seventeenth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3569009.3573108.
Texto completoJeon, Soo. "State Estimation for Kinematic Model Over Lossy Network". En ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4297.
Texto completoWurdemann, Helge A., Evangelos Georgiou, Lei Cui y Jian S. Dai. "SLAM Using 3D Reconstruction via a Visual RGB and RGB-D Sensory Input". En ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47735.
Texto completoKruijff, Ernst, Gerold Wesche, Kai Riege, Gernot Goebbels, Martijn Kunstman y Dieter Schmalstieg. "Tactylus, a pen-input device exploring audiotactile sensory binding". En the ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1180495.1180557.
Texto completoWakatabe, Ryo, Yasuo Kuniyoshi y Gordon Cheng. "O (logn) algorithm for forward kinematics under asynchronous sensory input". En 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989291.
Texto completoRichards, Deborah. "Intimately intelligent virtual agents: knowing the human beyond sensory input". En ICMI '17: INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3139491.3139505.
Texto completoConnor, Jack, Jordan Nowell, Benjamin Champion y Matthew Joordens. "Analysis of Robotic Fish Using Swarming Rules with Limited Sensory Input". En 2019 14th Annual Conference System of Systems Engineering (SoSE). IEEE, 2019. http://dx.doi.org/10.1109/sysose.2019.8753879.
Texto completoScherlen, Anne-Catherine y Vincent Gautier. "Eye movements : sensory input to command and control adaptive visual aids". En 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE, 2007. http://dx.doi.org/10.1109/cne.2007.369669.
Texto completoAtashzar, S. Farokh, Mahya Shahbazi, Fariborz Rahimi, Mehdi Delrobaei, Jack Lee, Rajni V. Patel y Mandar Jog. "Effect of kinesthetic force feedback and visual sensory input on writer's cramp". En 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER 2013). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6696076.
Texto completoInformes sobre el tema "Sensory input"
Parker, Michael, Alex Stott, Brian Quinn, Bruce Elder, Tate Meehan y Sally Shoop. Joint Chilean and US mobility testing in extreme environments. Engineer Research and Development Center (U.S.), noviembre de 2021. http://dx.doi.org/10.21079/11681/42362.
Texto completoEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak y Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, julio de 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Texto completoJones, Scott B., Shmuel P. Friedman y Gregory Communar. Novel streaming potential and thermal sensor techniques for monitoring water and nutrient fluxes in the vadose zone. United States Department of Agriculture, enero de 2011. http://dx.doi.org/10.32747/2011.7597910.bard.
Texto completoKuznetsov, Victor, Vladislav Litvinenko, Egor Bykov y Vadim Lukin. A program for determining the area of the object entering the IR sensor grid, as well as determining the dynamic characteristics. Science and Innovation Center Publishing House, abril de 2021. http://dx.doi.org/10.12731/bykov.0415.15042021.
Texto completoMcMurtrey, Michael, Kunal Mondal, Joseph Bass, Kiyo Fujimoto y Austin Biaggne. Report on plasma jet printer for sensor fabrication with process parameters optimized by simulation input. Office of Scientific and Technical Information (OSTI), septiembre de 2019. http://dx.doi.org/10.2172/1668670.
Texto completoAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li y A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, noviembre de 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Texto completoBaker, John L., James L. Olds y Joel L. Davis. A Novel Approach to Large Scale Brain Network Models: An Algorithmic Model for Place Cell Emergence With Robotic Sensor Input. Fort Belvoir, VA: Defense Technical Information Center, junio de 2004. http://dx.doi.org/10.21236/ada425321.
Texto completoBerney, Ernest, Andrew Ward y Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), marzo de 2021. http://dx.doi.org/10.21079/11681/40042.
Texto completoMeiri, Noam, Michael D. Denbow y Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, noviembre de 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Texto completoGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs y Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, octubre de 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Texto completo