Literatura académica sobre el tema "Seagrasses"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Seagrasses".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Seagrasses"
Batuwael, Anggi Wawan y Dominggus Rumahlatu. "ASOSIASI GASTROPODA DENGAN TUMBUHAN LAMUN DI PERAIRAN PANTAI NEGERI TIOUW KECAMATAN SAPARUA KABUPATEN MALUKU TENGAH". Biopendix: Jurnal Biologi, Pendidikan dan Terapan 4, n.º 2 (22 de mayo de 2019): 109–16. http://dx.doi.org/10.30598/biopendixvol4issue2page109-116.
Texto completoIerodiaconou, Daniel A. y Laurie J. B. Laurenson. "Estimates of Heterozostera tasmanica, Zostera muelleri and Ruppia megacarpa distribution and biomass in the Hopkins Estuary, western Victoria, by GIS". Australian Journal of Botany 50, n.º 2 (2002): 215. http://dx.doi.org/10.1071/bt00093.
Texto completoShort, Frederick T. y Sandy Wyllie-Echeverria. "Natural and human-induced disturbance of seagrasses". Environmental Conservation 23, n.º 1 (marzo de 1996): 17–27. http://dx.doi.org/10.1017/s0376892900038212.
Texto completoBurkholder, Derek A., Michael R. Heithaus y James W. Fourqurean. "Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem". Marine and Freshwater Research 63, n.º 11 (2012): 1051. http://dx.doi.org/10.1071/mf12029.
Texto completoJ. Lee Long, W., R. G. Coles y L. J. McKenzie. "Issues for seagrass conservation management in Queensland". Pacific Conservation Biology 5, n.º 4 (1999): 321. http://dx.doi.org/10.1071/pc000321.
Texto completoOmollo, Derrick, Virginia Wang’ondu, Michael Githaiga, Daniel Gorman y James Kairo. "The Contribution of Subtidal Seagrass Meadows to the Total Carbon Stocks of Gazi Bay, Kenya". Diversity 14, n.º 8 (11 de agosto de 2022): 646. http://dx.doi.org/10.3390/d14080646.
Texto completoSamper-Villarreal, Jimena. "Seagrasses in the Eastern Tropical Pacific: species, distribution ecology, blue carbon, and threats". Latin American Journal of Aquatic Research 52, n.º 3 (30 de junio de 2024): 336–49. http://dx.doi.org/10.3856/vol52-issue3-fulltext-3167.
Texto completoPollard, PC y M. Greenway. "Photosynthetic characteristics of seagrasses (Cymodocea serrulata, Thalassia hemprichii and Zostera capricornia) in a low-light environment, with a comparison of leaf-marking and lacunal-gas measurements of productivity". Marine and Freshwater Research 44, n.º 1 (1993): 127. http://dx.doi.org/10.1071/mf9930127.
Texto completoLavery, Paul. "Marine Management: Marine Conservation". Pacific Conservation Biology 5, n.º 4 (1999): 240. http://dx.doi.org/10.1071/pc00240a.
Texto completoHwang, Charnsmorn, Chih-Hua Chang, Michael Burch, Milena Fernandes y Tim Kildea. "Effects of Epiphytes and Depth on Seagrass Spectral Profiles: Case Study of Gulf St. Vincent, South Australia". International Journal of Environmental Research and Public Health 16, n.º 15 (29 de julio de 2019): 2701. http://dx.doi.org/10.3390/ijerph16152701.
Texto completoTesis sobre el tema "Seagrasses"
Mvungi, Esther Francis. "Seagrasses and Eutrophication : Interactions between seagrass photosynthesis, epiphytes, macroalgae and mussels". Doctoral thesis, Stockholms universitet, Botaniska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-55808.
Texto completoAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Papers 1, 3 and 4: Submitted. Paper 2: Manuscript.
Swedish Agency for Research Cooperation (Sida/SAREC) marine bilateral programme
Horn, Lotte E. "The measurement of seagrass photosynthesis using pulse amplitude modulated (PAM) fluorometry and its practical applications, specifically in regard to transplantation /". Access via Murdoch University Digital Theses Project, 2006. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20061123.150231.
Texto completoUku, Jacqueline. "Seagrasses and their epiphytes : Characterization of abundance and productivity in tropical seagrass beds". Doctoral thesis, Stockholm University, Department of Botany, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-527.
Texto completoSeagrass beds cover large intertidal and subtidal areas in coastal zones around the world and they are subjected to a wide variety of anthropogenic influences, such as nutrient enrichment due to sewage seepage. This study was undertaken to address specific questions focusing on whether near shore tropical seagrasses that receive a constant influx of groundwater nutrient inputs, would exhibit a higher productivity and to what extent epiphytic algae reflect the impacts of nutrient inputs. An additional aspect of study was to determine the prevalence of “acid zones” in tropical seagrasses. The productivity of the seagrasses Cymodocea rotundata, Thalassia hemprichii and Thalassodendron ciliatum was compared in two sites along the Kenyan coast; Nyali (a high nutrient site) and Vipingo (a low nutrient site). Of the three seagrasses T. hemprichii showed the most distinct differences with higher growth and biomass in the nutrient rich site whereas the growth of C. rotundata was similar in the two sites. A high epiphytic cover was found on the shoots of T. ciliatum found in the high nutrient site Nyali.
Morphological and genetic characterization of bacterial and cyanobacterial epiphytes showed specific associations of nitrogen fixing cyanobacteria on the seagrass C. rotundata in the low nutrient site (Vipingo). At this site, shoots of C. rotundata had a higher C:N ratio compared to shoots in the high nutrient site (Nyali) indicating that the association with nitrogen fixing cyanobacteria is a strategy, for this species, to meet its nutrient needs. Bacterial epiphytes belonging to the group Cytophaga-Flavobacteria-Bacteroides (CFB) were found on T. ciliatum and T. hemprichii from the two sites. CFB bacteria are characteristic of waste water, particularly from livestock farming areas, thereby confirming seepage of groundwater from surrounding catchment areas. These prokaryotic associations were specific for the different seagrasses and it appears that the establishment of epiphytic associations may not be a random encounter but a specific association that meets specific needs.
The seagrass T. ciliatum in the high nutrient site had an abundance of macroalgal epiphytes and the impact of the epiphytic coverage was assessed using Pulse Amplitude Modulated (PAM) fluorometry. The photosynthetic activity of seagrass parts that were covered by epiphytes was suppressed but the productivity of the whole shoot was not significantly reduced. In the nutrient rich site, epiphytes were found to contribute up to 45% of the total estimated gross productivity, during the SE monsoon season, while epiphytic contribution in the nutrient poor site, was 8%. Epiphytic abundance and contribution to productivity decreased during the NE monsoon. The photosynthetic activity of T. ciliatum shoots was similar in the two study sites with shoots in the nutrient rich site growing faster. T. ciliatum, in the low nutrient site, invested in the development of below ground root tissue which may indicate the development of a strategy to gain access to pore water nutrient pools.
Carbon uptake strategies of eight tropical seagrasses were re-evaluated to determine how common the “acid zone” mechanism is among tropical seagrasses. Six of the eight species studied showed photosynthetic inorganic carbon (Ci) acquisition based on carbonic anhydrase catalysed HCO3- to CO2 conversions within an acidified diffusion boundary layer (“acid zone”). Cymodocea serrulata appeared to maintain its carbon uptake by extracellular carbonic anhydrase catalysed CO2 formation from HCO3- without the need for acidic zones, whereas, Halophila ovalis appeared to have a system in which H+ extrusion may be followed by HCO3--H+ co-transport into the cells. These findings indicate that competition for carbon, between the host seagrass species and epiphytes, could determine seagrass-epiphyte associations.
Uku, Jacqueline Nduku. "Seagrasses and their epiphytes : characterization of abundance and productivity in tropical seagrass beds /". Stockholm : Dept. of Botany, Stockholm university, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-527.
Texto completoArpayoglou, Irene. "Cultivation of Wrack Collected Seagrasses". NSUWorks, 2004. http://nsuworks.nova.edu/occ_stuetd/285.
Texto completoMcMahon, Kathryn. "Recovery of subtropical seagrasses from natural disturbances /". [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19102.pdf.
Texto completoTadkaew, Nichanan. "Monitoring of seagrasses in Lake Illawarra, NSW". Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.142240/index.html.
Texto completoPaxson, Jill C. "Branching frequency of Thalassia testudinum (Banks ex König) as an ecological indicator in Florida Bay /". Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/paxsonj/jillpaxson.pdf.
Texto completoHernán, Martínez Gema. "Defense strategies against herbivory in seagrasses". Doctoral thesis, Universitat de les Illes Balears, 2017. http://hdl.handle.net/10803/565412.
Texto completo[spa]Introducción: El herbivorismo es un proceso ecológico clave que regula la composición y estructura de las comunidades de plantas y determina la transferencia de energía de productores primarios al resto de la cadena trófica. Las plantas han desarrollado diversos mecanismos de defensa para evitar o resistir el herbivorismo. Entre ellos están las estrategias tolerancia, que disminuyen el efecto del herbivorismo en la vitalidad de la planta (ej. acumulación de reservas en tejidos subterráneos) y las estrategias de resistencia cuyo objetivo es evitar el consumo (ej. aumento del contenido en fibra). Estas estrategias se basan en características morfológicas (ej. dureza) y químicas de las plantas (ej. defensas químicas) y pueden expresarse de forma continua (constitutivas) o en respuesta al daño por herbívoros (inducidas). El herbivorismo en el medio marino puede ser mayor que en sistemas terrestres y puede tener importantes consecuenc ias cuando afecta a especies formadoras de hábitat Las fanerógamas marinas son especies fundadoras dominantes en zonas someras costeras que nos proporcionan múltiples e importantes servicios. Debido a su relevancia ecológica y socioeconómica, profundizar en el conocimiento de las interacciones planta-herbívoro en estos ecosistemas es crucial pues existen cada vez más ejemplos que indican que cambios en las poblaciones de herbívoros han supuesto importantes perturbaciones en dichos ecosistemas. El propósito principal de esta tesis es entender cómo cambios en factores ambientales determinan la variación de las estrategias de defensa y palatabilidad de la planta, y por tanto el comportamiento de los herbívoros. Contenido La disponibilidad de nutrientes destaca por sus efectos sobre las características químicas y morfológicas de las plantas ya que aumenta el valor nutritivo y disminuye el contenido en fibras de las hojas tanto en experimentos de fertilización como en regiones con mayor disponibilidad de nutrientes, lo cual las puede hacer más vulnerables al consumo por herbívoros. La simulación del daño por herbívoros afecta a las estrategias de defensa de las plantas de forma diferente en las dos especies estudiadas. Mientras que en Posidonia oceanica se induce la producción de compuestos de resistencia, en Zostera marina no hay inducción disminuyendo además su resistencia y tolerancia. Esto se traduce en que los herbívoros prefieren las hojas más nutritivas repetidamente recortadas de Z. marina y las hojas sin recortar con menos fibras y más nutrientes de P. oceanica. Los cambios ambientales relacionados con el cambio global analizados en esta tesis (aumento del CO2 y de la temperatura), tienen importantes efectos en las plántulas de P. oceanica. El aumento del CO2 disuelto aumenta la actividad fotosintética de la planta y con esto las reservas de carbohidratos de las semillas. A pesar de que el aumento de CO2 disminuye la calidad nutricional de las hojas, éstas fueron las preferidas por los herbívoros, posiblemente debido al aumento de sacarosa o por otras características no analizadas en las plántulas. Al contrario que el aumento de CO2, el incremento de la temperatura produce efectos claramente negativos aumentando la mortalidad, la respiración y uso de las reservas de la semilla en estas plántulas. Además, disminuye el contenido en fibras de las hojas reduciéndose la resistencia frente al herbivorismo y aumentando por tanto la preferencia por herbívoros. Estos resultados muestran los potenciales efectos aditivos que el herbivorismo puede suponer en los impactos de los cambios ambientales en las poblaciones de plantas marinas. Conclusión La investigación presentada en esta tesis contribuye a entender los mecanismos que influyen en los cambios de las estrategias de defensa frente al herbivorismo. Principalmente, en cómo estos mecanismos cambian bajo diferentes condiciones ambientales y como los cambios en las características asociadas a resistencia frente a herbívoros determinan la vulnerabilidad de la planta frente al herbivorismo. Además, destaca la importancia de evaluar los efectos de los cambios ambientales sobre las interacciones entre especies.
[eng]Introduction Herbivory is a key ecological process that regulates the composition and structure of plant communities and determines the energy transferred from primary producers to upper trophic levels. Plants have evolved a suite of defense strategies to avoid or resist herbivory. Tolerance strategies reduce the impact of herbivory in plant fitness (e.g., increased belowground reserves), and resistance strategies reduce preference or performance of the herbivore (e.g., low nutritional quality, high fiber content). These strategies are based on morphological (e.g., toughness) and chemical traits (e.g., phenolic compounds) and can be expressed regardless of the risk of herbivory (constitutively) or in response to herbivore damage (induced). In addition, defense strategies may shift under different environmental scenarios (e.g. higher resource availability often drives a lower investment in resistance). Herbivory in marine systems can be greater than in terrestrial ecosystems, and it can have particularly important consequences when it is exerted upon habitat-forming plants. Seagrasses are key foundation species dominating shallow coastal areas and providing numerous and critical ecosystem services to humans. Given their ecological and socioeconomic relevance, understanding plant-herbivore interactions in these systems is crucial since changes in herbivore populations can result in important disturbances in these ecosystems. The main purpose of this thesis is to understand the effect of changes in environmental factors in plant defense strategies against herbivory and how these changes affect the palatability of the plant, and thus herbivore behavior. Content Nutrient availability stands out for its effects on chemical and morphological plant defense traits. Plants under high nutrient environments in fertilization experiments and regions of higher nutrient availability (i.e. latitudinal comparison) exhibited higher nutritional quality and lower fiber content, both of which can increase their vulnerability to consumption. Interestingly, effects of nutrients on secondary compounds were absent or inconsistent. Simulated herbivory had clear effects on both morphological and chemical plant defense traits, however the two species studied differed in their responses. While in Posidonia oceanica, herbivory induced the production of resistance traits (e.g. fiber, secondary metabolites), in Zostera marina there was no induction of resistance traits, and on the contrary, simulated herbivory reduced their tolerance and resistance. As a result of the changes in traits exhibited by the plants, herbivores preferred the more nutritious repeatedly clipped leaves of Z. marina and the less chemically defended and more nutritious unclipped leaves of P. oceanica. The environmental changes related to global climate change that I analyzed in this thesis (i.e. increased CO2 and temperature), had important effects on defense strategies and susceptibility to grazers of P. oceanica seedlings. The increased pCO2 of seawater enhanced plant photosynthetic activity, leading to higher carbohydrate reserves in the seeds, which are the main storage tissue of the seedling. Although the increase in CO2 decreased leaf nutritional quality (i.e. leaf nitrogen), plants growing under high CO2 were preferred by the herbivores, possibly due to their increase in sucrose content or perhaps other chemical or structural characteristics that were not analyzed. In contrast to CO2, the increase in temperature produced clear negative effects on seedlings; increasing mortality and respiration resulting in greater use of seed reserves. Furthermore, warming reduced leaf fiber, which increased herbivore preference for warmed plants, and thus resulted in a decreased resistance to herbivory. These results illustrate the potential additive or counteractive effects that herbivory could have on determining the effects of environmental changes in seagrass ecosystems. Conclusion The research presented in this thesis contributes to identify the mechanisms that drive the changes in defense strategies against herbivory due to changes in environmental factors. Particularly, how these mechanisms change under different environmental conditions and how changes in traits associated with resistance to herbivores determine the vulnerability of plants to herbivory, highlighting the importance of assessing the effects of environmental factors on species interactions.
Kahn, Amanda E. "Physiological ecology of the seagrass Halophila Johnosnii Eiseman in marine and riverine influenced environments". View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-3/r1/kahna/amandakahn.pdf.
Texto completoLibros sobre el tema "Seagrasses"
Phillips, Ronald C. Seagrasses. Washington, D.C: Smithsonian Institution Press, 1988.
Buscar texto completoLarkum, Anthony W. D., Gary A. Kendrick y Peter J. Ralph, eds. Seagrasses of Australia. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0.
Texto completoMiththapala, Sriyanie. Seagrasses and sand dunes. Colombo, Sri Lanka: Ecosystems and Livelihoods Group Asia, IUCN, 2008.
Buscar texto completoGreen, Edmund P. World atlas of seagrasses. Berkeley, CA: University of California Press, 2004.
Buscar texto completo1965-, Green Edmund P. y Short Frederick T, eds. World atlas of seagrasses. Berkeley: University of California Press, 2003.
Buscar texto completoMiththapala, Sriyanie. Seagrasses and sand dunes. Colombo, Sri Lanka: Ecosystems and Livelihoods Group Asia, IUCN, 2008.
Buscar texto completoK, Ramamurthy y Botanical Survey of India, eds. Seagrasses of coromandel coast India. Coimbatore: Botanical Survey of India, 1992.
Buscar texto completoTié̂n, Nguyẽ̂n Văn. Cỏ biẻ̂n Việt Nam: Thành phà̂n loài, phân bó̂, sinh thái-sinh học. Hà Nội: Nhà xuá̂t bản Khoa học và kỹ thuật, 2002.
Buscar texto completoPulich, Warren. Current status and historical trends of seagrasses in the Corpus Christi Bay National Estuary Program study area. [Austin, Tex: Texas Natural Resource Conservation Commission, 1997.
Buscar texto completoPhang, Siew Moi. Seagrasses of Malaysia: Phang Siew-Moi. Kuala Lumpur, Malaysia: Institute of Biological Sciences, University of Malaya, 2000.
Buscar texto completoCapítulos de libros sobre el tema "Seagrasses"
Short, F. T., C. A. Short y A. B. Novak. "Seagrasses". En The Wetland Book, 1–19. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_262-1.
Texto completoShort, Frederick T., Cathy A. Short y Alyssa B. Novak. "Seagrasses". En The Wetland Book, 73–91. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_262.
Texto completoMerlin, Mark D. "Seagrasses". En Encyclopedia of Modern Coral Reefs, 973–78. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2639-2_146.
Texto completoCortés, Jorge y Eva Salas. "Seagrasses". En Marine Biodiversity of Costa Rica, Central America, 119–22. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8278-8_6.
Texto completoAl-Mansoori, Noura y Himansu Sekhar Das. "Seagrasses of the United Arab Emirates". En A Natural History of the Emirates, 267–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37397-8_9.
Texto completoPérez-Lloréns, J. Lucas, Juan J. Vergara, Irene Olivé, Jesús M. Mercado, Rafael Conde-Álvarez, Ángel Pérez-Ruzafa y Félix L. Figueroa. "Autochthonous Seagrasses". En The Mediterranean Sea, 137–58. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6704-1_9.
Texto completoCunha-Lignon, Marília, Jocemar Tomasino Mendonça, Luis Americo Conti, Kcrishna Vilanova de Souza Barros y Karine Matos Magalhães. "Mangroves and Seagrasses". En Blue Economy, 55–85. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5065-0_3.
Texto completoLarkum, Anthony W. D., Michelle Waycott y John G. Conran. "Evolution and Biogeography of Seagrasses". En Seagrasses of Australia, 3–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_1.
Texto completoO’Brien, Katherine R., Matthew P. Adams, Angus J. P. Ferguson, Jimena Samper-Villarreal, Paul S. Maxwell, Mark E. Baird y Catherine Collier. "Seagrass Resistance to Light Deprivation: Implications for Resilience". En Seagrasses of Australia, 287–311. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_10.
Texto completoLarkum, Anthony W. D., Mathieu Pernice, Martin Schliep, Peter Davey, Milan Szabo, John A. Raven, Mads Lichtenberg, Kasper Elgetti Brodersen y Peter J. Ralph. "Photosynthesis and Metabolism of Seagrasses". En Seagrasses of Australia, 315–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_11.
Texto completoActas de conferencias sobre el tema "Seagrasses"
Tongnunui, Prasert, Prasert Tongnunui, Woraporn Tarangkoon, Woraporn Tarangkoon, Parichat Hukiew, Parichat Hukiew, Patcharee Kaeoprakan et al. "SEAGRASS RESTORATION: AN UPDATE FROM TRANG PROVINCE, SOUTHWESTERN THAILAND". En Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b9447ad58f1.23030316.
Texto completoTongnunui, Prasert, Prasert Tongnunui, Woraporn Tarangkoon, Woraporn Tarangkoon, Parichat Hukiew, Parichat Hukiew, Patcharee Kaeoprakan et al. "SEAGRASS RESTORATION: AN UPDATE FROM TRANG PROVINCE, SOUTHWESTERN THAILAND". En Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b431687e149.
Texto completoAbdelbary, Ekhlas M. M. y Aisha AlAshwal. "A comparative study of Seagrasses Species in Regional Seas and QMZ". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0039.
Texto completoPovidisa, Katrina y Marianne Holmer. "Iron plaque formation on seagrasses: Why not?" En 2008 IEEE/OES US/EU-Baltic International Symposium (BALTIC). IEEE, 2008. http://dx.doi.org/10.1109/baltic.2008.4625509.
Texto completoRahmawati, Susi, Udhi Eko Hernawan y Agustin Rustam. "The seagrass carbon content of 0.336 of dry weight can be applied in Indonesian seagrasses". En INTERNATIONAL CONFERENCE ON BIOLOGY AND APPLIED SCIENCE (ICOBAS). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115616.
Texto completoMushtaha, Mohanad, Yousef Ashraf Nasr y Abdullrahman Al-Muftah. "Diatoms & Dinoflagellates Associated with Seagrasses, Algae and Mangrove". En Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eesp2462.
Texto completoDubey, Ashwani Kumar, Jibi G. Thanikkal, E. Dilipan, Puneet Sharma y Manoj Kumar Shukla. "An Efficient Machine Learning Model for Identification of Seagrasses through Morphometrics". En 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). IEEE, 2024. http://dx.doi.org/10.1109/iatmsi60426.2024.10503347.
Texto completoJuan-Vicedo, Jorge y Alice Carrara. "Current conservation status of autochthonous seagrasses in the Mediterranean Sea: a systematic review". En MOL2NET'22, Conference on Molecular, Biomedical & Computational Sciences and Engineering, 8th ed. - MOL2NET: FROM MOLECULES TO NETWORKS. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/mol2net-08-12744.
Texto completoANSTEE, JANET M., ARNOLD G. DEKKER y VITTORIO E. BRANDO. "RETROSPECTIVE CHANGE DETECTION IN A SHALLOW COASTAL TIDAL LAKE: MAPPING SEAGRASSES IN WALLIS LAKE, AUSTRALIA". En Proceedings of the Second International Workshop on the Multitemp 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702630_0031.
Texto completoEstes, Maurice G., Mohammad Al-Hamdan, Ron Thom, Dale Quattrochi, Dana Woodruff, Chaeli Judd, Jean Ellis, Brian Watson, Hugo Rodriguez y Hoyt Johnson. "Watershed and hydrodynamic modeling for evaluating the impact of land use change on submerged aquatic vegetation and seagrasses in Mobile Bay". En OCEANS 2009. IEEE, 2009. http://dx.doi.org/10.23919/oceans.2009.5422399.
Texto completoInformes sobre el tema "Seagrasses"
Kyla Richards, Kyla Richards. Could Hawaii seagrasses be facing extinction? Experiment, abril de 2022. http://dx.doi.org/10.18258/26159.
Texto completoINTERIM BRIGADE COMBAT TEAM FORT LEWIS WA. Evaluation of the Use of Grid Platforms to Minimize Shading Impacts to Seagrasses. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2001. http://dx.doi.org/10.21236/ada394903.
Texto completoDecho, Alan W. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada628298.
Texto completoDecho, Alan W. COBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada630366.
Texto completoZimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1997. http://dx.doi.org/10.21236/ada629371.
Texto completoZimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada630542.
Texto completoKoch, Evamaria W., Larry P. Sanford, Shih-Nan Chen, Deborah J. Shafer y Jane M. Smith. Waves in Seagrass Systems: Review and Technical Recommendations. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2006. http://dx.doi.org/10.21236/ada458760.
Texto completoDavis, Andy, Michael Feeley, Mario Londoño, Lee Richter, Judd Patterson y Andrea Atkinson. South Florida/Caribbean Network seagrass community monitoring: Protocol narrative—version 1.1. National Park Service, julio de 2022. http://dx.doi.org/10.36967/2293388.
Texto completoEisemann, Eve, Safra Altman, Damarys Acevedo-Mackey y Molly Reif. Relating seagrass habitat to geomorphology and substrate characteristics around Ship Island, MS. Engineer Research and Development Center (U.S.), junio de 2019. http://dx.doi.org/10.21079/11681/33023.
Texto completoHarrison, P. G. y M. Dunn. Fraser River delta seagrass ecosystems, their distributions and importance to migratory birds. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2004. http://dx.doi.org/10.4095/215808.
Texto completo