Literatura académica sobre el tema "Schéma de Glimm"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Schéma de Glimm".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Schéma de Glimm"
Peng, Yue-Jun y Denis Serre. "Non-consistance du schéma de glimm pour le systéme des câbles elastiques". Applied Mathematics Letters 5, n.º 5 (septiembre de 1992): 35–38. http://dx.doi.org/10.1016/0893-9659(92)90059-i.
Texto completoBianchini, Stefano y Stefano Modena. "On a quadratic functional for scalar conservation laws". Journal of Hyperbolic Differential Equations 11, n.º 02 (junio de 2014): 355–435. http://dx.doi.org/10.1142/s0219891614500118.
Texto completoHUA, JIALE y TONG YANG. "A NOTE ON THE NEW GLIMM FUNCTIONAL FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION LAWS". Mathematical Models and Methods in Applied Sciences 20, n.º 05 (mayo de 2010): 815–42. http://dx.doi.org/10.1142/s0218202510004453.
Texto completoBressan, Alberto. "The unique limit of the Glimm scheme". Archive for Rational Mechanics and Analysis 130, n.º 3 (1995): 205–30. http://dx.doi.org/10.1007/bf00392027.
Texto completoAncona, Fabio y Andrea Marson. "A Locally Quadratic Glimm Functional and Sharp Convergence Rate of the Glimm Scheme for Nonlinear Hyperbolic Systems". Archive for Rational Mechanics and Analysis 196, n.º 2 (2 de julio de 2009): 455–87. http://dx.doi.org/10.1007/s00205-009-0248-3.
Texto completoHua, Jiale, Zaihong Jiang y Tong Yang. "A New Glimm Functional and Convergence Rate of Glimm Scheme for General Systems of Hyperbolic Conservation Laws". Archive for Rational Mechanics and Analysis 196, n.º 2 (19 de septiembre de 2009): 433–54. http://dx.doi.org/10.1007/s00205-009-0266-1.
Texto completoFrid, Hermano. "Periodic solutions of conservation laws constructed through Glimm scheme". Transactions of the American Mathematical Society 353, n.º 11 (1 de junio de 2001): 4529–44. http://dx.doi.org/10.1090/s0002-9947-01-02813-6.
Texto completoWang, Zejun y Qi Zhang. "Periodic solutions to p-system constructed through Glimm scheme". Journal of Mathematical Analysis and Applications 435, n.º 2 (marzo de 2016): 1088–98. http://dx.doi.org/10.1016/j.jmaa.2015.10.070.
Texto completoBressan, Alberto y Andrea Marson. "Error Bounds for a Deterministic Version of the Glimm Scheme". Archive for Rational Mechanics and Analysis 142, n.º 2 (1 de mayo de 1998): 155–76. http://dx.doi.org/10.1007/s002050050088.
Texto completoChou, Shih-Wei, John M. Hong, Bo-Chih Huang y Reyna Quita. "Global bounded variation solutions describing Fanno–Rayleigh fluid flows in nozzles". Mathematical Models and Methods in Applied Sciences 28, n.º 06 (21 de mayo de 2018): 1135–69. http://dx.doi.org/10.1142/s0218202518500306.
Texto completoTesis sobre el tema "Schéma de Glimm"
Dongmo, Nguepi Guissel Lagnol. "Modèles mathématiques et numériques avancés pour la simulation du polymère dans les réservoirs pétroliers". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG077.
Texto completoAn effective technique to increase production in an oil field is to inject a mixture of water and polymer. The viscosity of polymer reduces the mobility of water, which then pushes oil better, resulting in a higher extraction rate. The numerical simulation of such an enhanced oil recovery is therefore of paramount importance. However, despite decades of research, the modeling of polymer flows in porous media and its numerical resolution remains a difficult subject.On the one hand, the models traditionally used by reservoir engineers exhibit, in the best case, resonance-like singularities that make them weakly hyperbolic. Thisdefect gives rise to some complications but remains acceptable. In the worst case, when we wish to incorporate the effect of the inaccessible pore volume (IPV), themodels become non-hyperbolic, which exacerbates the numerical instabilities that are likely to appear.On the other hand, classical numerical schemes do not yield satisfactory results. Without IPV, the excessive diffusion around the contact wave causes the most relevant information to be lost. With IPV, the existence of complex eigenvalues generates exponential instabilities at the continuous level that must be addressed at the discrete level to avoid a premature stop of the code.The objective of this thesis is to remedy these difficulties. Regarding models, we analyze several IPV laws and show an equivalence between two of them. Furthermore, we propose reasonable sufficient conditions on the IPV law to enforce weak hyperbolicity of the flow system. Regarding schemes for the problem without IPV, we advocate a correction to improve the accuracy of contact discontinuities. For the problem with IPV, we design a relaxation method that guarantees the stability of the calculations for all IPV laws
Libros sobre el tema "Schéma de Glimm"
Groah, Jeffrey, Blake Temple y Joel Smoller. Shock Wave Interactions in General Relativity: A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes. Springer London, Limited, 2007.
Buscar texto completoGroah, Jeffrey, Blake Temple y Joel Smoller. Shock Wave Interactions in General Relativity: A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes. Springer, 2010.
Buscar texto completoGroah, Jeffrey, B. Temple y Joel Smoller. Shock Wave Interactions in General Relativity: A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes (Springer Monographs in Mathematics). Springer, 2006.
Buscar texto completoShock-Wave Solutions Of The Einstein Equations With Perfect Fluid Sources: Existence And Consistency By A Locally Inertial Glimm Scheme (Memoirs of the American Mathematical Society). American Mathematical Society, 2004.
Buscar texto completoCapítulos de libros sobre el tema "Schéma de Glimm"
Smoller, Joel. "The Glimm Difference Scheme". En Grundlehren der mathematischen Wissenschaften, 368–90. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0873-0_19.
Texto completo"The Glimm scheme". En Systems of Conservation Laws 1, 146–85. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9780511612374.006.
Texto completoAitkin, Murray, Brain Francis y John Hinde. "Introducing GLIM4". En Statistical Modelling in GLIM 4, 1–24. Oxford University PressOxford, 2005. http://dx.doi.org/10.1093/oso/9780198524137.003.0001.
Texto completo"5. Convergence of Lax–Friedrichs Scheme, Godunov Scheme and Glimm Scheme". En Vanishing Viscosity Method, 485–530. De Gruyter, 2016. http://dx.doi.org/10.1515/9783110494273-005.
Texto completoSwan, Tony, Robert Gilchrist, Malcolm Bradley, Mike Clarke, Peter Green, Allan Reese, John Hinde, Andrew Stalewski y Carl O’brien. "Applications of GLIM". En The Glim System, 306–622. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198522317.003.0014.
Texto completoActas de conferencias sobre el tema "Schéma de Glimm"
Cunha da Silva, Daniel, Maria Laura Martins-Costa y ROGERIO GAMA. "APPLICATION OF GLIMM SCHEME FOR DESCRIBING FLOW THROUGH POROUS MEDIA WITH KINEMATICAL CONSTRAINED FLUID FRACTION". En 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0233.
Texto completo