Literatura académica sobre el tema "Sc-RNA seq"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Sc-RNA seq".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Sc-RNA seq"
Ma, Shi-Xun y Su Bin Lim. "Single-Cell RNA Sequencing in Parkinson’s Disease". Biomedicines 9, n.º 4 (1 de abril de 2021): 368. http://dx.doi.org/10.3390/biomedicines9040368.
Texto completoBiancalani, Tommaso, Gabriele Scalia, Lorenzo Buffoni, Raghav Avasthi, Ziqing Lu, Aman Sanger, Neriman Tokcan et al. "Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram". Nature Methods 18, n.º 11 (28 de octubre de 2021): 1352–62. http://dx.doi.org/10.1038/s41592-021-01264-7.
Texto completoAjani, Jaffer A., Yan Xu, Longfei Huo, Ruiping Wang, Yuan Li, Ying Wang, Melissa Pool Pizzi et al. "YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition". Gut 70, n.º 1 (27 de abril de 2020): 55–66. http://dx.doi.org/10.1136/gutjnl-2019-319748.
Texto completoSi, Tong, Zackary Hopkins, John Yanev, Jie Hou y Haijun Gong. "A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis". PLOS ONE 18, n.º 11 (10 de noviembre de 2023): e0292792. http://dx.doi.org/10.1371/journal.pone.0292792.
Texto completoLi, Shenghao, Hui Guo, Simai Zhang, Yizhou Li y Menglong Li. "Attention-based deep clustering method for scRNA-seq cell type identification". PLOS Computational Biology 19, n.º 11 (10 de noviembre de 2023): e1011641. http://dx.doi.org/10.1371/journal.pcbi.1011641.
Texto completoLall, Snehalika, Sumanta Ray y Sanghamitra Bandyopadhyay. "A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data". PLOS Computational Biology 18, n.º 3 (10 de marzo de 2022): e1009600. http://dx.doi.org/10.1371/journal.pcbi.1009600.
Texto completoHanamsagar, Richa, Robert Marcus, Mathew Chamberlain, Emanuele de Rinaldis y Virginia Savova. "Optimum processing conditions for single cell RNA sequencing on frozen human PBMCs". Journal of Immunology 202, n.º 1_Supplement (1 de mayo de 2019): 131.15. http://dx.doi.org/10.4049/jimmunol.202.supp.131.15.
Texto completoHagemann, Tobias, Paul Czechowski, Adhideb Ghosh, Wenfei Sun, Hua Dong, Falko Noé, Christian Wolfrum, Matthias Blüher y Anne Hoffmann. "Laminin α4 Expression in Human Adipose Tissue Depots and Its Association with Obesity and Obesity Related Traits". Biomedicines 11, n.º 10 (17 de octubre de 2023): 2806. http://dx.doi.org/10.3390/biomedicines11102806.
Texto completoLe, Huy, Beverly Peng, Janelle Uy, Daniel Carrillo, Yun Zhang, Brian D. Aevermann y Richard H. Scheuermann. "Machine learning for cell type classification from single nucleus RNA sequencing data". PLOS ONE 17, n.º 9 (23 de septiembre de 2022): e0275070. http://dx.doi.org/10.1371/journal.pone.0275070.
Texto completoLehman, Bettina J., Fernando J. Lopez-Diaz, Thom P. Santisakultarm, Linjing Fang, Maxim N. Shokhirev, Kenneth E. Diffenderfer, Uri Manor y Beverly M. Emerson. "Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress". PLOS Genetics 17, n.º 1 (7 de enero de 2021): e1009277. http://dx.doi.org/10.1371/journal.pgen.1009277.
Texto completoTesis sobre el tema "Sc-RNA seq"
Salloum, Yazan. "Innate lymphoid cell-produced interleukin-26 modulates proliferation and DNA damage in intestinal epithelial cells". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS015.
Texto completoInterleukin-26 (IL-26) was identified as a risk factor for inflammatory bowel disease (IBD) in humans and was shown to be overexpressed in IBD lesions. However, the in vivo functions of IL-26 are not fully understood due to its absence in rodents. Since the zebrafish has an orthologue of IL-26, we are utilizing this model to study IL-26 role in gut homeostasis.We generated the first in vivo loss-of-function model to study IL-26, and found that the gut microbiota modulates IL-26 expression in the larval gut. By performing RNA-seq on dissected guts, we revealed that IL-26 modulates pathways related to cell cycle, DNA replication, and DNA repair. We confirmed that IL-26 inhibits cell proliferation in the gut. Next, we plan to identify the cell types targeted by the antiproliferative function of IL-26 and to explore the conservation of this function in mammals.In order to understand the function of IL-26 in gut inflammation, we injected a bacterial extract into the gut of WT larvae and observed that IL-26 is transiently but highly induced post-injection. We further plan to investigate the consequences of this induction, including its effects on proliferation and DNA damage in gut epithelial progenitors, as well as the role of innate lymphoid cells as the cell source of IL-26.In addition, we confirmed the conservation of IL-26 intrinsic bactericidal activity in zebrafish, and will explore the in vivo impact of this activity using IL-26 receptor knockout.In summary, this project exploits the zebrafish to address questions about the functions of IL-26 that are not possible to answer using other animal models. This study could help unravel a circuit between microbiota, Innate lymphoid cells, and intestinal epithelial cells to preserve homeostasis in the gut through IL-26. A better characterization of the role of IL-26 in maintaining gut homeostasis is critical for understanding the aetiology of IBD and may aid in the development of therapeutic targets for this disorder
Actas de conferencias sobre el tema "Sc-RNA seq"
Zhang, Tim, Amirali Amirsoleimani, Jason K. Eshraghian, Mostafa Rahimi Azghadi, Roman Genov y Yu Xia. "SSCAE: A Neuromorphic SNN Autoencoder for sc-RNA-seq Dimensionality Reduction". En 2023 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2023. http://dx.doi.org/10.1109/iscas46773.2023.10181994.
Texto completo