Artículos de revistas sobre el tema "Sarcomeric protein mutation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Sarcomeric protein mutation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Becker, K. David, Kim R. Gottshall, Reed Hickey, Jean-Claude Perriard y Kenneth R. Chien. "Point Mutations in Human β Cardiac Myosin Heavy Chain Have Differential Effects on Sarcomeric Structure and Assembly: An ATP Binding Site Change Disrupts Both Thick and Thin Filaments, Whereas Hypertrophic Cardiomyopathy Mutations Display Normal Assembly". Journal of Cell Biology 137, n.º 1 (7 de abril de 1997): 131–40. http://dx.doi.org/10.1083/jcb.137.1.131.
Texto completoRiaz, Muhammad, Jinkyu Park, Lorenzo R. Sewanan, Yongming Ren, Jonas Schwan, Subhash K. Das, Pawel T. Pomianowski et al. "Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy". Circulation 145, n.º 16 (19 de abril de 2022): 1238–53. http://dx.doi.org/10.1161/circulationaha.121.056265.
Texto completoPiroddi, Nicoletta, E. Rosalie Witjas-Paalberends, Claudia Ferrara, Cecilia Ferrantini, Giulia Vitale, Beatrice Scellini, Paul J. M. Wijnker et al. "The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM". Journal of General Physiology 151, n.º 1 (21 de diciembre de 2018): 18–29. http://dx.doi.org/10.1085/jgp.201812160.
Texto completoChun, M. y S. Falkenthal. "Ifm(2)2 is a myosin heavy chain allele that disrupts myofibrillar assembly only in the indirect flight muscle of Drosophila melanogaster." Journal of Cell Biology 107, n.º 6 (1 de diciembre de 1988): 2613–21. http://dx.doi.org/10.1083/jcb.107.6.2613.
Texto completoClay, Sarah A., Timothy L. Domeier, Laurin M. Hanft, Kerry S. McDonald y Maike Krenz. "Elevated Ca2+ transients and increased myofibrillar power generation cause cardiac hypercontractility in a model of Noonan syndrome with multiple lentigines". American Journal of Physiology-Heart and Circulatory Physiology 308, n.º 9 (1 de mayo de 2015): H1086—H1095. http://dx.doi.org/10.1152/ajpheart.00501.2014.
Texto completoMarcu, Andreea Sorina, Radu Vătăşescu, Sebastian Onciul, Viorica Rădoi y Ruxandra Jurcuţ. "Intrafamilial Phenotypical Variability Linked to PRKAG2 Mutation—Family Case Report and Review of the Literature". Life 12, n.º 12 (18 de diciembre de 2022): 2136. http://dx.doi.org/10.3390/life12122136.
Texto completoOjala, Marisa, Chandra Prajapati, Risto-Pekka Pölönen, Kristiina Rajala, Mari Pekkanen-Mattila, Jyrki Rasku, Kim Larsson y Katriina Aalto-Setälä. "Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Orα-Tropomyosin Mutation for Hypertrophic Cardiomyopathy". Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/1684792.
Texto completoMasum, Md Mohiuddin, Md Abdullah Al Sayeef, Rayhan Shahrear, Devjani Banik, Gonopati Biswas y Zinnat Ara Yesmin. "Hypertrophic Cardiomyopathy: The Molecular Genetics". Faridpur Medical College Journal 14, n.º 1 (26 de marzo de 2020): 44–49. http://dx.doi.org/10.3329/fmcj.v14i1.46168.
Texto completoAhmad, Syed Abrar, Chandrakant Chavan, Rajesh Badani y Varsha Wankhade. "Sarcomeric gene mutations in phenotypic positive hypertrophic cardiomyopathic patients in Indian population". Cellular and Molecular Biology 67, n.º 6 (27 de febrero de 2022): 1–10. http://dx.doi.org/10.14715/cmb/2021.67.6.1.
Texto completoНиязова, С. С., Н. Н. Чакова, С. М. Комиссарова y М. А. Сасинович. "Mutation spectrum in sarcomeric protein genes and their phenotypic features in Belarusian patients with hypertrophic cardiomyopathy". Nauchno-prakticheskii zhurnal «Medicinskaia genetika», n.º 6() (28 de junio de 2019): 21–33. http://dx.doi.org/10.25557/2073-7998.2019.06.21-33.
Texto completoSmelter, Dan F., Willem J. de Lange, Wenxuan Cai, Ying Ge y J. Carter Ralphe. "The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability". American Journal of Physiology-Heart and Circulatory Physiology 314, n.º 6 (1 de junio de 2018): H1179—H1191. http://dx.doi.org/10.1152/ajpheart.00686.2017.
Texto completoRichard, Pascale, Richard Isnard, Lucie Carrier, Olivier Dubourg, Yves Donatien, Bénédicte Mathieu, Gisèle Bonne et al. "Double heterozygosity for mutations in the β-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy". Journal of Medical Genetics 36, n.º 7 (1 de julio de 1999): 542–45. http://dx.doi.org/10.1136/jmg.36.7.542.
Texto completoRosen, Samantha M., Mugdha Joshi, Talia Hitt, Alan H. Beggs y Pankaj B. Agrawal. "Knockin mouse model of the human CFL2 p.A35T mutation results in a unique splicing defect and severe myopathy phenotype". Human Molecular Genetics 29, n.º 12 (11 de marzo de 2020): 1996–2003. http://dx.doi.org/10.1093/hmg/ddaa035.
Texto completoKaneda, Tomoya, Chie Naruse, Atsuhiro Kawashima, Noboru Fujino, Toru Oshima, Masanobu Namura, Shinichi Nunoda et al. "A novel β-myosin heavy chain gene mutation, p.Met531Arg, identified in isolated left ventricular non-compaction in humans, results in left ventricular hypertrophy that progresses to dilation in a mouse model". Clinical Science 114, n.º 6 (12 de febrero de 2008): 431–40. http://dx.doi.org/10.1042/cs20070179.
Texto completoBroughton, K. M., J. Li, E. Sarmah, C. M. Warren, Y. H. Lin, M. P. Henze, V. Sanchez-Freire, R. J. Solaro y B. Russell. "A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation". American Journal of Physiology-Heart and Circulatory Physiology 311, n.º 1 (1 de julio de 2016): H107—H117. http://dx.doi.org/10.1152/ajpheart.00162.2016.
Texto completoOno, Shoichiro, Kazumi Nomura, Sadae Hitosugi, Domena K. Tu, Jocelyn A. Lee, David L. Baillie y Kanako Ono. "The two actin-interacting protein 1 genes have overlapping and essential function for embryonic development in Caenorhabditis elegans". Molecular Biology of the Cell 22, n.º 13 (julio de 2011): 2258–69. http://dx.doi.org/10.1091/mbc.e10-12-0934.
Texto completoSchwäbe, Frederic V., Emanuel K. Peter, Manuel H. Taft y Dietmar J. Manstein. "Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V". International Journal of Molecular Sciences 22, n.º 21 (4 de noviembre de 2021): 11949. http://dx.doi.org/10.3390/ijms222111949.
Texto completoVaikhanskaya, T. G., L. N. Sivitskaya, T. V. Kurushko, T. V. Rusak, O. D. Levdansky, N. G. Danilenko y O. G. Davydenko. "Non-compaction cardiomyopathy. Part I: clinical and genetic heterogeneity and predictors of unfavorable prognosis". Russian Journal of Cardiology 25, n.º 11 (5 de diciembre de 2020): 3872. http://dx.doi.org/10.15829/29/1560-4071-2020-3872.
Texto completoViricel, Amélia y Patricia E. Rosel. "Looking into a whale’s heart: investigating a genetic basis for cardiomyopathy in a non-model species". Genome 60, n.º 8 (agosto de 2017): 695–705. http://dx.doi.org/10.1139/gen-2016-0203.
Texto completoLu, Serena Huei-An, Kang-Zheng Lee, Paul Wei-Che Hsu, Liang-Yu Su, Yu-Chen Yeh, Chien-Yuan Pan y Su-Yi Tsai. "Alternative Splicing Mediated by RNA-Binding Protein RBM24 Facilitates Cardiac Myofibrillogenesis in a Differentiation Stage-Specific Manner". Circulation Research 130, n.º 1 (7 de enero de 2022): 112–29. http://dx.doi.org/10.1161/circresaha.121.320080.
Texto completoLange, Stephan, Sue Perera, Phildrich Teh y Ju Chen. "Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover". Molecular Biology of the Cell 23, n.º 13 (julio de 2012): 2490–504. http://dx.doi.org/10.1091/mbc.e12-01-0052.
Texto completovan der Velden, Jolanda y Ger J. M. Stienen. "Cardiac Disorders and Pathophysiology of Sarcomeric Proteins". Physiological Reviews 99, n.º 1 (1 de enero de 2019): 381–426. http://dx.doi.org/10.1152/physrev.00040.2017.
Texto completoVANDIJK, S., D. DOOIJES, D. DEKKERS, J. LAMERS, F. TENCATE, G. STIENEN y J. VANDERVELDEN. "Alterations in sarcomeric protein expression, phosphorylation and contractile function in hypertrophic cardiomyopathy patients carrying a founder mutation in myosin binding protein C". European Journal of Heart Failure Supplements 7 (junio de 2008): 30–31. http://dx.doi.org/10.1016/s1567-4215(08)60086-7.
Texto completoAdalsteinsdottir, Berglind, Michael Burke, Barry J. Maron, Ragnar Danielsen, Begoña Lopez, Javier Diez, Petr Jarolim et al. "Hypertrophic cardiomyopathy in myosin-binding protein C (MYBPC3) Icelandic founder mutation carriers". Open Heart 7, n.º 1 (abril de 2020): e001220. http://dx.doi.org/10.1136/openhrt-2019-001220.
Texto completoEden, Matthias y Norbert Frey. "Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy". Journal of Clinical Medicine 10, n.º 4 (4 de febrero de 2021): 577. http://dx.doi.org/10.3390/jcm10040577.
Texto completoCandasamy, Alexandra J., Robert S. Haworth, Friederike Cuello, Michael Ibrahim, Sriram Aravamudhan, Marcus Krüger, Mark R. Holt et al. "Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes". Journal of Biological Chemistry 289, n.º 3 (26 de noviembre de 2013): 1282–93. http://dx.doi.org/10.1074/jbc.m113.479030.
Texto completoDa'as, Sahar I., Khalid Fakhro, Angelos Thanassoulas, Navaneethakrishnan Krishnamoorthy, Alaaeldin Saleh, Brian L. Calver, Bared Safieh-Garabedian et al. "Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction". Biochemical Journal 475, n.º 24 (14 de diciembre de 2018): 3933–48. http://dx.doi.org/10.1042/bcj20180685.
Texto completoAntoniutti, Guido, Fiama Giuliana Caimi-Martinez, Jorge Álvarez-Rubio, Paula Morlanes-Gracia, Jaume Pons-Llinares, Blanca Rodríguez-Picón, Elena Fortuny-Frau, Laura Torres-Juan, Damian Heine-Suner y Tomas Ripoll-Vera. "Genotype-Phenotype Correlation in Hypertrophic Cardiomyopathy: New Variant p.Arg652Lys in MYH7". Genes 13, n.º 2 (9 de febrero de 2022): 320. http://dx.doi.org/10.3390/genes13020320.
Texto completoZhou, Qifeng, Scott Kesteven, Jianxin Wu, Parwez Aidery, Meinrad Gawaz, Michael Gramlich, Michael P. Feneley y Richard P. Harvey. "Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model". BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/163564.
Texto completoWarmke, J., M. Yamakawa, J. Molloy, S. Falkenthal y D. Maughan. "Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila." Journal of Cell Biology 119, n.º 6 (15 de diciembre de 1992): 1523–39. http://dx.doi.org/10.1083/jcb.119.6.1523.
Texto completoCimiotti, Diana, Heidi Budde, Roua Hassoun y Kornelia Jaquet. "Genetic Restrictive Cardiomyopathy: Causes and Consequences—An Integrative Approach". International Journal of Molecular Sciences 22, n.º 2 (8 de enero de 2021): 558. http://dx.doi.org/10.3390/ijms22020558.
Texto completoCimiotti, Diana, Heidi Budde, Roua Hassoun y Kornelia Jaquet. "Genetic Restrictive Cardiomyopathy: Causes and Consequences—An Integrative Approach". International Journal of Molecular Sciences 22, n.º 2 (8 de enero de 2021): 558. http://dx.doi.org/10.3390/ijms22020558.
Texto completoBraun, T., E. Bober, M. A. Rudnicki, R. Jaenisch y H. H. Arnold. "MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice". Development 120, n.º 11 (1 de noviembre de 1994): 3083–92. http://dx.doi.org/10.1242/dev.120.11.3083.
Texto completoCho, J. H., Y. S. Oh, K. W. Park, J. Yu, K. Y. Choi, J. Y. Shin, D. H. Kim et al. "Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans". Journal of Cell Science 113, n.º 22 (15 de noviembre de 2000): 3947–58. http://dx.doi.org/10.1242/jcs.113.22.3947.
Texto completoTucholski, Trisha, Wenxuan Cai, Zachery R. Gregorich, Elizabeth F. Bayne, Stanford D. Mitchell, Sean J. McIlwain, Willem J. de Lange et al. "Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics". Proceedings of the National Academy of Sciences 117, n.º 40 (23 de septiembre de 2020): 24691–700. http://dx.doi.org/10.1073/pnas.2006764117.
Texto completoCrocini, Claudia y Michael Gotthardt. "Cardiac sarcomere mechanics in health and disease". Biophysical Reviews 13, n.º 5 (octubre de 2021): 637–52. http://dx.doi.org/10.1007/s12551-021-00840-7.
Texto completoClippinger, Sarah R., Paige E. Cloonan, Lina Greenberg, Melanie Ernst, W. Tom Stump y Michael J. Greenberg. "Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy". Proceedings of the National Academy of Sciences 116, n.º 36 (19 de agosto de 2019): 17831–40. http://dx.doi.org/10.1073/pnas.1910962116.
Texto completoMalkovskiy, Andrey V., Nadezda Ignatyeva, Yuanyuan Dai, Gerd Hasenfuss, Jayakumar Rajadas y Antje Ebert. "Integrated Ca2+ flux and AFM force analysis in human iPSC-derived cardiomyocytes". Biological Chemistry 402, n.º 1 (18 de noviembre de 2020): 113–21. http://dx.doi.org/10.1515/hsz-2020-0212.
Texto completoNishikawa, Kiisa, Stan L. Lindstedt, Anthony Hessel y Dhruv Mishra. "N2A Titin: Signaling Hub and Mechanical Switch in Skeletal Muscle". International Journal of Molecular Sciences 21, n.º 11 (1 de junio de 2020): 3974. http://dx.doi.org/10.3390/ijms21113974.
Texto completoWernicke, Dirk, Corinna Thiel, Corina M. Duja-Isac, Kirill V. Essin, Matthias Spindler, Derek J. R. Nunez, Ralph Plehm et al. "α-Tropomyosin mutations Asp175Asn and Glu180Gly affect cardiac function in transgenic rats in different ways". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, n.º 3 (septiembre de 2004): R685—R695. http://dx.doi.org/10.1152/ajpregu.00620.2003.
Texto completoPasternak, C., S. Wong y E. L. Elson. "Mechanical function of dystrophin in muscle cells." Journal of Cell Biology 128, n.º 3 (1 de febrero de 1995): 355–61. http://dx.doi.org/10.1083/jcb.128.3.355.
Texto completoDorsch, Schuldt, Remedios, Schinkel, Jong, Michels, Kuster, Brundel y Velden. "Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy". Cells 8, n.º 7 (18 de julio de 2019): 741. http://dx.doi.org/10.3390/cells8070741.
Texto completoFULLER, Stephen J., Elizabeth L. DAVIES, Judith GILLESPIE-BROWN, Hong SUN y Nicholas K. TONKS. "Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes". Biochemical Journal 323, n.º 2 (15 de abril de 1997): 313–19. http://dx.doi.org/10.1042/bj3230313.
Texto completoHertig, C. M., M. Eppenberger-Eberhardt, S. Koch y H. M. Eppenberger. "N-cadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant". Journal of Cell Science 109, n.º 1 (1 de enero de 1996): 1–10. http://dx.doi.org/10.1242/jcs.109.1.1.
Texto completoBerger, Joachim, Silke Berger, Yu Shan G. Mok, Mei Li, Hakan Tarakci y Peter D. Currie. "Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation". PLOS Genetics 18, n.º 2 (11 de febrero de 2022): e1010066. http://dx.doi.org/10.1371/journal.pgen.1010066.
Texto completoChang, Audrey N. y James D. Potter. "Sarcomeric Protein Mutations in Dilated Cardiomyopathy". Heart Failure Reviews 10, n.º 3 (septiembre de 2005): 225–35. http://dx.doi.org/10.1007/s10741-005-5252-6.
Texto completoMcCarthy, John J., Jessica L. Andrews, Erin L. McDearmon, Kenneth S. Campbell, Brigham K. Barber, Brooke H. Miller, John R. Walker, John B. Hogenesch, Joseph S. Takahashi y Karyn A. Esser. "Identification of the circadian transcriptome in adult mouse skeletal muscle". Physiological Genomics 31, n.º 1 (septiembre de 2007): 86–95. http://dx.doi.org/10.1152/physiolgenomics.00066.2007.
Texto completoKontrogianni-Konstantopoulos, Aikaterini, Maegen A. Ackermann, Amber L. Bowman, Solomon V. Yap y Robert J. Bloch. "Muscle Giants: Molecular Scaffolds in Sarcomerogenesis". Physiological Reviews 89, n.º 4 (octubre de 2009): 1217–67. http://dx.doi.org/10.1152/physrev.00017.2009.
Texto completoTsukamoto, Osamu. "Direct Sarcomere Modulators Are Promising New Treatments for Cardiomyopathies". International Journal of Molecular Sciences 21, n.º 1 (28 de diciembre de 2019): 226. http://dx.doi.org/10.3390/ijms21010226.
Texto completoKazmierczak, Katarzyna, Priya Muthu, Wenrui Huang, Michelle Jones, Yingcai Wang y Danuta Szczesna-Cordary. "Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice". Biochemical Journal 442, n.º 1 (27 de enero de 2012): 95–103. http://dx.doi.org/10.1042/bj20111145.
Texto completo