Artículos de revistas sobre el tema "Sarcomere mechanics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Sarcomere mechanics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Crocini, Claudia y Michael Gotthardt. "Cardiac sarcomere mechanics in health and disease". Biophysical Reviews 13, n.º 5 (octubre de 2021): 637–52. http://dx.doi.org/10.1007/s12551-021-00840-7.
Texto completoRassier, Dilson E. "Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells". American Journal of Physiology-Cell Physiology 313, n.º 2 (1 de agosto de 2017): C134—C145. http://dx.doi.org/10.1152/ajpcell.00050.2017.
Texto completoLieber, R. L. "659 SARCOMERE MECHANICS". Medicine & Science in Sports & Exercise 26, Supplement (mayo de 1994): S118. http://dx.doi.org/10.1249/00005768-199405001-00661.
Texto completoMüller, Dominik, Thorben Klamt, Lara Gentemann, Alexander Heisterkamp y Stefan Michael Klaus Kalies. "Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes". PLOS ONE 16, n.º 6 (4 de junio de 2021): e0252346. http://dx.doi.org/10.1371/journal.pone.0252346.
Texto completode Tombe, Pieter P. y Henk E. D. J. ter Keurs. "Cardiac muscle mechanics: Sarcomere length matters". Journal of Molecular and Cellular Cardiology 91 (febrero de 2016): 148–50. http://dx.doi.org/10.1016/j.yjmcc.2015.12.006.
Texto completoRussell, Robert J., Shen-Ling Xia, Richard B. Dickinson y Tanmay P. Lele. "Sarcomere Mechanics in Capillary Endothelial Cells". Biophysical Journal 97, n.º 6 (septiembre de 2009): 1578–85. http://dx.doi.org/10.1016/j.bpj.2009.07.017.
Texto completoRussell, Robert J., Richard B. Dickinson y Tanmay P. Lele. "Sarcomere Mechanics in the Stress Fiber". Biophysical Journal 96, n.º 3 (febrero de 2009): 626a. http://dx.doi.org/10.1016/j.bpj.2008.12.3310.
Texto completoNAGORNYAK, EKATERINA y GERALD H. POLLACK. "Connecting filament mechanics in the relaxed sarcomere". Journal of Muscle Research and Cell Motility 26, n.º 6-8 (2 de febrero de 2006): 303–6. http://dx.doi.org/10.1007/s10974-005-9036-3.
Texto completoKollár, Veronika, Dávid Szatmári, László Grama y Miklós S. Z. Kellermayer. "Dynamic Strength of Titin's Z-Disk End". Journal of Biomedicine and Biotechnology 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/838530.
Texto completoTer Keurs, Henk E. D. J., Tsuyoshi Shinozaki, Ying Ming Zhang, Yuji Wakayama, Yoshinao Sugai, Yutaka Kagaya, Masahito Miura, Penelope A. Boyden, Bruno D. M. Stuyvers y Amir Landesberg. "Sarcomere Mechanics in Uniform and Nonuniform Cardiac Muscle". Annals of the New York Academy of Sciences 1123, n.º 1 (19 de marzo de 2008): 79–95. http://dx.doi.org/10.1196/annals.1420.010.
Texto completoKoch, T. J. y W. Herzog. "Sarcomere number plays an important role in joint mechanics". Journal of Biomechanics 27, n.º 6 (enero de 1994): 643. http://dx.doi.org/10.1016/0021-9290(94)90915-6.
Texto completoLyon, Aurore, Lauren J. Dupuis, Theo Arts, Harry J. G. M. Crijns, Frits W. Prinzen, Tammo Delhaas, Jordi Heijman y Joost Lumens. "Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model". American Journal of Physiology-Heart and Circulatory Physiology 319, n.º 3 (1 de septiembre de 2020): H519—H530. http://dx.doi.org/10.1152/ajpheart.00275.2020.
Texto completoGuccione, J. M., L. K. Waldman y A. D. McCulloch. "Mechanics of Active Contraction in Cardiac Muscle: Part II—Cylindrical Models of the Systolic Left Ventricle". Journal of Biomechanical Engineering 115, n.º 1 (1 de febrero de 1993): 82–90. http://dx.doi.org/10.1115/1.2895474.
Texto completoEINARSSON, F., T. HULTGREN, B. O. LJUNG, E. RUNESSON y J. FRIDÉN. "Subscapularis Muscle Mechanics in Children with Obstetric Brachial Plexus Palsy". Journal of Hand Surgery (European Volume) 33, n.º 4 (agosto de 2008): 507–12. http://dx.doi.org/10.1177/1753193408090764.
Texto completoOttenheijm, C. "Sarcomere structure and mechanics in nemaline myopathy: A developing story". Neuromuscular Disorders 26 (octubre de 2016): S88. http://dx.doi.org/10.1016/j.nmd.2016.06.013.
Texto completoZacharchenko, Thomas, Eleonore von Castelmur, Daniel J. Rigden y Olga Mayans. "Structural advances on titin: towards an atomic understanding of multi-domain functions in myofilament mechanics and scaffolding". Biochemical Society Transactions 43, n.º 5 (1 de octubre de 2015): 850–55. http://dx.doi.org/10.1042/bst20150084.
Texto completoPiroddi, Nicoletta, E. Rosalie Witjas-Paalberends, Claudia Ferrara, Cecilia Ferrantini, Giulia Vitale, Beatrice Scellini, Paul J. M. Wijnker et al. "The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM". Journal of General Physiology 151, n.º 1 (21 de diciembre de 2018): 18–29. http://dx.doi.org/10.1085/jgp.201812160.
Texto completoCaremani, Marco y Massimo Reconditi. "Anisotropic Elasticity of the Myosin Motor in Muscle". International Journal of Molecular Sciences 23, n.º 5 (25 de febrero de 2022): 2566. http://dx.doi.org/10.3390/ijms23052566.
Texto completoHassoun, Roua, Heidi Budde, Andreas Mügge y Nazha Hamdani. "Cardiomyocyte Dysfunction in Inherited Cardiomyopathies". International Journal of Molecular Sciences 22, n.º 20 (15 de octubre de 2021): 11154. http://dx.doi.org/10.3390/ijms222011154.
Texto completoCaremani, Marco, Francesca Pinzauti, Massimo Reconditi, Gabriella Piazzesi, Ger J. M. Stienen, Vincenzo Lombardi y Marco Linari. "Size and speed of the working stroke of cardiac myosin in situ". Proceedings of the National Academy of Sciences 113, n.º 13 (16 de marzo de 2016): 3675–80. http://dx.doi.org/10.1073/pnas.1525057113.
Texto completoLongobardi, Stefano, Anna Sher y Steven A. Niederer. "In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction". PLOS Computational Biology 17, n.º 12 (6 de diciembre de 2021): e1009646. http://dx.doi.org/10.1371/journal.pcbi.1009646.
Texto completoMacKenna, D. A., J. H. Omens, A. D. McCulloch y J. W. Covell. "Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts". American Journal of Physiology-Heart and Circulatory Physiology 266, n.º 3 (1 de marzo de 1994): H1007—H1018. http://dx.doi.org/10.1152/ajpheart.1994.266.3.h1007.
Texto completoLu, Li, Ya Xu, Peili Zhu, Clifford Greyson y Gregory G. Schwartz. "A common mechanism for concurrent changes of diastolic muscle length and systolic function in intact hearts". American Journal of Physiology-Heart and Circulatory Physiology 280, n.º 4 (1 de abril de 2001): H1513—H1518. http://dx.doi.org/10.1152/ajpheart.2001.280.4.h1513.
Texto completoMa, Weikang, Marcus Henze, Robert L. Anderson, Henry Gong, Fiona L. Wong, Carlos L. del Rio y Thomas Irving. "The Super-Relaxed State and Length Dependent Activation in Porcine Myocardium". Circulation Research 129, n.º 6 (3 de septiembre de 2021): 617–30. http://dx.doi.org/10.1161/circresaha.120.318647.
Texto completode Souza Leite, Felipe, Fabio C. Minozzo, David Altman y Dilson E. Rassier. "Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils". Proceedings of the National Academy of Sciences 114, n.º 33 (1 de agosto de 2017): 8794–99. http://dx.doi.org/10.1073/pnas.1700615114.
Texto completoUsyk, T. P., J. H. Omens y A. D. McCulloch. "Regional septal dysfunction in a three-dimensional computational model of focal myofiber disarray". American Journal of Physiology-Heart and Circulatory Physiology 281, n.º 2 (1 de agosto de 2001): H506—H514. http://dx.doi.org/10.1152/ajpheart.2001.281.2.h506.
Texto completoda Silva Lopes, Katharina, Agnieszka Pietas, Michael H. Radke y Michael Gotthardt. "Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres". Journal of Cell Biology 193, n.º 4 (9 de mayo de 2011): 785–98. http://dx.doi.org/10.1083/jcb.201010099.
Texto completoNakamachi, Eiji, Jun Tsukamoto y Youjiro Tamura. "Skeletal Muscle Contraction Analyses Based on Molecular Potential Theory. Contraction of Sarcomere." Transactions of the Japan Society of Mechanical Engineers Series A 60, n.º 578 (1994): 2464–70. http://dx.doi.org/10.1299/kikaia.60.2464.
Texto completoKnupp y Squire. "Myosin Cross-Bridge Behaviour in Contracting Muscle—The T1 Curve of Huxley and Simmons (1971) Revisited". International Journal of Molecular Sciences 20, n.º 19 (2 de octubre de 2019): 4892. http://dx.doi.org/10.3390/ijms20194892.
Texto completoIshibashi, Yuji, Judith C. Rembert, Blase A. Carabello, Shintaro Nemoto, Masayoshi Hamawaki, Michael R. Zile, Joseph C. Greenfield y George Cooper. "Normal myocardial function in severe right ventricular volume overload hypertrophy". American Journal of Physiology-Heart and Circulatory Physiology 280, n.º 1 (1 de enero de 2001): H11—H16. http://dx.doi.org/10.1152/ajpheart.2001.280.1.h11.
Texto completoSweeney, H. L., S. A. Corteselli y M. J. Kushmerick. "Measurements on permeabilized skeletal muscle fibers during continuous activation". American Journal of Physiology-Cell Physiology 252, n.º 5 (1 de mayo de 1987): C575—C580. http://dx.doi.org/10.1152/ajpcell.1987.252.5.c575.
Texto completoShabarchin, A. A. y Andrey K. Tsaturyan. "Proposed role of the M-band in sarcomere mechanics and mechano-sensing: a model study". Biomechanics and Modeling in Mechanobiology 9, n.º 2 (8 de agosto de 2009): 163–75. http://dx.doi.org/10.1007/s10237-009-0167-0.
Texto completoSalick, Max R., Brett N. Napiwocki, Jin Sha, Gavin T. Knight, Shahzad A. Chindhy, Timothy J. Kamp, Randolph S. Ashton y Wendy C. Crone. "Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes". Biomaterials 35, n.º 15 (mayo de 2014): 4454–64. http://dx.doi.org/10.1016/j.biomaterials.2014.02.001.
Texto completoPavlov, Ivan, Rowan Novinger y Dilson E. Rassier. "The mechanical behavior of individual sarcomeres of myofibrils isolated from rabbit psoas muscle". American Journal of Physiology-Cell Physiology 297, n.º 5 (noviembre de 2009): C1211—C1219. http://dx.doi.org/10.1152/ajpcell.00233.2009.
Texto completoTER KEURS, H. E. D. J., Y. WAKAYAMA, Y. SUGAI, G. PRICE, Y. KAGAYA, P. A. BOYDEN, M. MIURA y B. D. M. STUYVERS. "Role of Sarcomere Mechanics and Ca2+ Overload in Ca2+ Waves and Arrhythmias in Rat Cardiac Muscle". Annals of the New York Academy of Sciences 1080, n.º 1 (1 de octubre de 2006): 248–67. http://dx.doi.org/10.1196/annals.1380.020.
Texto completoter Keurs, Henk E. D. J., Tsuyoshi Shinozaki, Ying Ming Zhang, Mei Luo Zhang, Yuji Wakayama, Yoshinao Sugai, Yutaka Kagaya et al. "Sarcomere mechanics in uniform and non-uniform cardiac muscle: A link between pump function and arrhythmias". Progress in Biophysics and Molecular Biology 97, n.º 2-3 (junio de 2008): 312–31. http://dx.doi.org/10.1016/j.pbiomolbio.2008.02.013.
Texto completoThomas, A. J., J. S. Arnold, B. Simhai y S. G. Kelsen. "Structure of abdominal muscles in the hamster: effect of elastase-induced emphysema". Journal of Applied Physiology 63, n.º 4 (1 de octubre de 1987): 1665–70. http://dx.doi.org/10.1152/jappl.1987.63.4.1665.
Texto completoLinke, Wolfgang A., Diane E. Rudy, Thomas Centner, Mathias Gautel, Christian Witt, Siegfried Labeit y Carol C. Gregorio. "I-Band Titin in Cardiac Muscle Is a Three-Element Molecular Spring and Is Critical for Maintaining Thin Filament Structure". Journal of Cell Biology 146, n.º 3 (9 de agosto de 1999): 631–44. http://dx.doi.org/10.1083/jcb.146.3.631.
Texto completoKirn, Borut. "Visualization of Myocardial Strain Pattern Uniqueness with Respect to Activation Time and Contractility: A Computational Study". Data 4, n.º 2 (24 de mayo de 2019): 79. http://dx.doi.org/10.3390/data4020079.
Texto completoLuo, Y., R. Cooke y E. Pate. "A model of stress relaxation in cross-bridge systems: effect of a series elastic element". American Journal of Physiology-Cell Physiology 265, n.º 1 (1 de julio de 1993): C279—C288. http://dx.doi.org/10.1152/ajpcell.1993.265.1.c279.
Texto completovan de Locht, Martijn, Tamara C. Borsboom, Josine M. Winter y Coen A. C. Ottenheijm. "Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics". International Journal of Molecular Sciences 22, n.º 17 (25 de agosto de 2021): 9187. http://dx.doi.org/10.3390/ijms22179187.
Texto completoCampbell, Kenneth S. y Richard L. Moss. "SLControl: PC-based data acquisition and analysis for muscle mechanics". American Journal of Physiology-Heart and Circulatory Physiology 285, n.º 6 (diciembre de 2003): H2857—H2864. http://dx.doi.org/10.1152/ajpheart.00295.2003.
Texto completoRome, L. C., I. H. Choi, G. Lutz y A. Sosnicki. "The influence of temperature on muscle function in the fast swimming scup. I. Shortening velocity and muscle recruitment during swimming". Journal of Experimental Biology 163, n.º 1 (1 de febrero de 1992): 259–79. http://dx.doi.org/10.1242/jeb.163.1.259.
Texto completoGivli, Sefi y Kaushik Bhattacharya. "A coarse-grained model of the myofibril: Overall dynamics and the evolution of sarcomere non-uniformities". Journal of the Mechanics and Physics of Solids 57, n.º 2 (febrero de 2009): 221–43. http://dx.doi.org/10.1016/j.jmps.2008.10.013.
Texto completoToepfer, Christopher N., Markus B. Sikkel, Valentina Caorsi, Anupama Vydyanath, Iratxe Torre, O'Neal Copeland, Alexander R. Lyon et al. "A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation". American Journal of Physiology-Heart and Circulatory Physiology 311, n.º 2 (1 de agosto de 2016): H465—H475. http://dx.doi.org/10.1152/ajpheart.00899.2015.
Texto completoCaramani, Marco, Luca Melli, Mario Dolfi, Vincenzo Lombardi y Marco Linari. "Half-Sarcomere Mechanics and Energetics Indicate that Myosin Motors Slip Between Two Consecutive Actin Monomers during their Working Stroke". Biophysical Journal 102, n.º 3 (enero de 2012): 17a. http://dx.doi.org/10.1016/j.bpj.2011.11.118.
Texto completoHanft, Laurin M. y Kerry S. McDonald. "Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 296, n.º 5 (mayo de 2009): H1524—H1531. http://dx.doi.org/10.1152/ajpheart.00864.2008.
Texto completoGarcia-Webb, M. G., A. J. Taberner, N. C. Hogan y I. W. Hunter. "A modular instrument for exploring the mechanics of cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 293, n.º 1 (julio de 2007): H866—H874. http://dx.doi.org/10.1152/ajpheart.01055.2006.
Texto completoWeinert, Stefanie, Nora Bergmann, Xiuju Luo, Bettina Erdmann y Michael Gotthardt. "M line–deficient titin causes cardiac lethality through impaired maturation of the sarcomere". Journal of Cell Biology 173, n.º 4 (15 de mayo de 2006): 559–70. http://dx.doi.org/10.1083/jcb.200601014.
Texto completoCoirault, Catherine, Denis Chemla, Jean-Claude Pourny, Francine Lambert y Yves Lecarpentier. "Instantaneous force-velocity-length relationship in diaphragmatic sarcomere". Journal of Applied Physiology 82, n.º 2 (1 de febrero de 1997): 404–12. http://dx.doi.org/10.1152/jappl.1997.82.2.404.
Texto completo