Literatura académica sobre el tema "Rye Genetics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Rye Genetics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Rye Genetics"
Voylokov, Anatoly V., Svetlana P. Sosnikhina, Natalia D. Tikhenko, Natalia V. Tsvetkova, Elena I. Mikhailova y Viktor G. Smirnov. "Peterhof collection of rye and its use in genetic studies". Ecological genetics 16, n.º 2 (7 de agosto de 2018): 40–49. http://dx.doi.org/10.17816/ecogen16240-49.
Texto completoLykholay, A. N., I. A. Vladimirov, E. A. Andreeva, V. G. Smirnov y A. V. Voylokov. "Genetics of anthocyaninless rye". Russian Journal of Genetics 50, n.º 10 (octubre de 2014): 1102–6. http://dx.doi.org/10.1134/s1022795414100081.
Texto completoOrellana, Juan. "MOST OF THE HOMOEOLOGOUS PAIRING AT METAPHASE I IN WHEAT-RYE HYBRIDS IS NOT CHIASMATIC". Genetics 111, n.º 4 (1 de diciembre de 1985): 917–31. http://dx.doi.org/10.1093/genetics/111.4.917.
Texto completoChang, Ya-Wen, Susie C. Howard, Yelena V. Budovskaya, Jasper Rine y Paul K. Herman. "The rye Mutants Identify a Role for Ssn/Srb Proteins of the RNA Polymerase II Holoenzyme During Stationary Phase Entry in Saccharomyces cerevisiae". Genetics 157, n.º 1 (1 de enero de 2001): 17–26. http://dx.doi.org/10.1093/genetics/157.1.17.
Texto completoFREIDHOFF, L., D. MEYERS, E. KAUTZKY, W. BIAS, S. HSU y D. MARSH. "205 Epidemiology and genetics of response to whole Rye extract, Rye I and Rye II". Journal of Allergy and Clinical Immunology 75, n.º 1 (enero de 1985): 156. http://dx.doi.org/10.1016/0091-6749(85)90340-9.
Texto completoUrban, E. P., S. I. Hardzei, D. U. Artjukh y I. S. Hardzei. "Directions, methods and results of rye (Secale cereale L.) breeding in Belarus". Proceedings of the National Academy of Sciences of Belarus. Agrarian Series 60, n.º 2 (4 de mayo de 2022): 160–70. http://dx.doi.org/10.29235/1817-7204-2022-60-2-160-170.
Texto completoRen, Z. L. y T. Lelley. "Genetics of Hybrid Necrosis in Rye". Plant Breeding 100, n.º 3 (junio de 1988): 173–80. http://dx.doi.org/10.1111/j.1439-0523.1988.tb00237.x.
Texto completoApolinarska, B., H. Wiśeniewska y B. Wojciechowska. "Aegilops-rye amphiploids and substitution rye used for introgression of genetic material into rye (Secale cereale L.)". Journal of Applied Genetics 51, n.º 4 (diciembre de 2010): 413–20. http://dx.doi.org/10.1007/bf03208871.
Texto completoSchlegel, R. "Hybrid breeding boosted molecular genetics in rye". Vavilov Journal of Genetics and Breeding 19, n.º 5 (3 de diciembre de 2015): 589–603. http://dx.doi.org/10.18699/vj15.076.
Texto completoSchlegel, R. "Hybrid breeding boosted molecular genetics in rye". Russian Journal of Genetics: Applied Research 6, n.º 5 (julio de 2016): 569–83. http://dx.doi.org/10.1134/s2079059716050105.
Texto completoTesis sobre el tema "Rye Genetics"
Singh, Nagendra Kumar. "The structure and genetic control of endosperm proteins in wheat and rye". Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phs6174.pdf.
Texto completoHorn, Marizanne. "Transfer of genetic resistance to the Russian wheat aphid from rye to wheat". Thesis, Stellenbosch : Stellenbosch University, 1997. http://hdl.handle.net/10019.1/55770.
Texto completoENGLISH ABSTRACT: An octoploid triticale was derived from the F1 of a Russian wheat aphid resistant rye, 'Turkey 77', and 'Chinese Spring' wheat. The alloploid was crossed (a) to common wheat, and (b) to the 'Imperial' rye to 'Chinese Spring' disomic addition lines. F2 progeny from these crosses were tested for Russian wheat aphid resistance and C-banded. Resistance was found to be associated with chromosome arm 1RS of the 'Turkey 77' rye genome. This initial work was done by MARAIS (1991) who made a RWA resistant, monotelosomic 1RS ('Turkey 77') addition plant available for the study. The F3 progeny of this monotelosomic addition plant was used to confirm the RWA resistance on chromosome 1RS. The monotelosomic addition plant was then crossed with the wheat cultivar 'Gamtoos', which has the 1BL.1 RS 'Veery' translocation. Unlike the 1RS segment in 'Gamtoos', the 'Turkey 77'- derived 1RS telosome did not express the rust resistance genes 5r31 and Lr26 which could then be used as markers. From the F1 a monotelosomic 1RS addition plant that was also heterozygous for the 1BL.1 RS translocation, was selected and testcrossed with an aphid susceptible common wheat, 'Inia 66'. Meiotic pairing between the .rye arms resulted in the recovery of five euploid, Russian wheat aphid resistant plants out of a progeny of 99 euploids. One recombinant also retained 5r31 and Lr26 and was allowed to self pollinate. With the aid of SOS-PAGE profiles, Russian wheat aphid resistant 1BL.1 RS translocation homozygotes were identified and it was possible to confirm that the Russian wheat aphid resistance gene was in fact transferred to the 1BL.1RS ('Veery') translocation. Two attempts were made to map the Russiar, wheat aphid locus or loci. (1) Telosomic mapping was attempted. For this purpose a plant with 2n = 40 + 1BL.1 RS + 1RS was obtained, and testcrossed with a Russian wheat aphid susceptible wheat. (2) A disomic, recombined 1BL.1 RS translocation line with Russian wheat aphid resistance but lacking the Lr26 and Sr31 alleles was crossed with 'Gamtoos' and the F1 testcrossed. The testcross in both strategies were done with 'Chinese Spring'. In the first experiment the Sr31 locus was located 10.42 map units from the Lr26 locus. The rust resistance data implied that the genetic distance estimates may be unreliable and therefore the laborious Russian wheat aphid resistance tests were not done. In the second experiment a Russian wheat aphid resistance gene was located 14.5 map units from the Lr26 locus. In the latter cross nonmendel ian segregation of the Russian wheat aphid resistance evidently occurred which implied that the estimated map distance may be inaccurate. It was also not possible to determine the number of genes involved from the data.
Digitized at 300 dpi Colour & b/W PDF format (OCR), using ,KODAK i 1220 PLUS scanner. Digitised, Ricardo Davids on request from ILL 25 April 2013
AFRIKAANSE OPSOMMING: 'n Oktaplo"lede triticale is gemaak vanaf die F1 van 'n kruising tussen 'n Russiese koringluis-weerstandbiedende rog, 'Turkey 77', en die koringkultivar 'Chinese Spring'. Die alloplo"led is gekruis met gewone broodkoring en met 'Imperial' rog/'Chinese Spring' disomiese addissielyne. Die F2 nageslag vanaf hierdie kruisings is getoets vir Russiese koringluisweerstandbiedendheid en C-bande is ook gedoen. Weerstand is gevind wat geassosieer is met die 1RS chromosoomarm van 'Turkey 77'. Hierdie oorspronklike werk is deur MARAIS (1991) gedoen en uit sy materiaal is 'n monotelosomiese 1RS ('Turkey 77') addissieplant beskikbaar gestel vir die huidige studie. Die F3 nageslag van hierdie monotelosomiese addissieplant is gebruik om die weerstand teen die Russiese koringluis op chromosoom 1RS te bevestig. Die monotelosomiese addissieplant is ook gekruis met die koringkultivar 'Gamtoos' wat die 1BL.1 RS-translokasie dra. Hoewel die 1RS segment van 'Gamtoos' die roesweerstandsgene, Sr31 en Lr26 uitdruk, is dit nie die geval met die 'Turkey 77' 1RS telosoom nie. Hierdie gene kon dus as merkergene gebruik word. Vanuit die F1 is 'n monotelosomiese 1RS addissieplant geselekteer wat ook heterosigoties was vir die 1BL.1 RStranslokasie. Hierdie plant is getoetskruis met 'n luisvatbare gewone broodkoring, 'Inia 66'. Meiotiese paring tussen die rogarms het daartoe gelei dat vyf euplo"lede Russiese koringluis-weerstandbiedende nageslag uit 99 euplo"lede nageslag geselekteer kon word. Een rekombinant het ook Sr31 en Lr26 behou en is toegelaat om self te bestuif. Met behulp van SDSPAGE profiele is Russiese koringluis-weerstandbiedende 1BL.1 RStranslokasie homosigote ge"ldentifiseer en kon bevestig word dat die weerstandsgeen vir die Russiese koringluis oorgedra is na die 1BL.1 RS ('Veery') -translokasie. Twee strategies is gevolg om die Russiese koringluislokus of -loci te karteer: (1) 'n Telosomiese analise is gedoen. 'n Plant met 2n = 40 + 1BL.1 RS + 1RS is verkry en met 'n luisvatbare koring bestuif. (2) 'n Gerekombineerde, disomiese plant met Russiese koringluis-weerstandbiedendheid maar sonder die Lr26 en Sr31 allele is gekruis met 'Gamtoos' en die F1 getoetskruis. Die toetskruisouer in beide die strategiee was 'Chinese Spring'. In die eerste eksperiment is die Sr31-lokus 10.42 kaarteenhede vanaf die Lr26-lokus gelokaliseer. Die raesdata het ge"impliseer dat onbetraubare genetiese kaarteenhede geskat sou word en daarom is die omslagtige Russiese koringluis weerstandsbepalings nie gedoen nie. In die tweede eksperiment is die Russiese koringluis-weerstandsgeen op 14.5 kaarteenhede vanaf die Lr26-lokus gelokaliseer. Nie-Mendeliese segregasie van die Russiese koringluis-weerstand in hierdie karteringseksperiment het ge'impliseer dat die berekende kaartafstand onakkuraat mag wees. Dit was ook nie moontlik om op grand van die data die aantal gene betrakke af te lei nie.
Neves, Nuno Alberto Fernandes Ferreira Neves. "Genomic interactions in wheat-rye hybrids : nucleolar dominance, DNA methylation and chromatin topology". Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317976.
Texto completoAlderson, Alison Louise. "Sequence analysis and molecular cloning of enzyme inhibitors from seeds of rye (Secale cereale L.)". Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6613/.
Texto completoJacobs, Johan Adolf. "Karakterisering van derivate uit 'n Thinopyrum distichum X tetraploïede rog kruising". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52904.
Texto completoENGLISH ABSTRACT: Soil salinity is a major limiting factor of plant and crop growth, because the absorption of water and nutrients is such a complex process while low and moderate salinity are omnipresent. Plant growth is affected negatively if a specific ion concentration exceeds its threshold and becomes toxic. The detrimental effect of soil affected by salt on crop production is increasing worldwide (Tanji, 1990). The level to which plants can tolerate high salinity levels is genetically controlled with several physiological and genetic mechanisms contributing to salt tolerance (Epstein & Rains, 1987). The most effective way of addressing the limitations of crop productivity in saline areas, is the development of salt tolerant varieties. Understanding the genetics of salt tolerance is, therefore, necessary for the development of an effective breeding strategy for salt tolerance. The department of Genetics (US) conducts a wide crosses research programme aiming to transfer genes for salt tolerance to wheat and triticale. The donor species, Thinopyrum disticum, an indigenous coastal wheat grass, adapted to high concentrations of salt, was crossed with cultivated rye (Secale cereale) in an attempt to study the genetics of salt tolerance (Marais et al., 1998). The primary goal of this study was to find molecular markers (RAPD and AFLP) which associate with chromosomes promoting salt tolerance for later attempts to transfer the genes to triticale. Seventy clones of secondary hybrids (Th disticum /4x-rye 1/2x-rye) were tested for salt tolerance and showed different levels of salt tolerance. RAPD-marker analyses were used to identify polymorphisms between salt tolerant and salt sensitive plants. Twelve RAPD primers produced clear, analyzable and repetitive polymorphic . fragments that can be used as useful markers. Different AFLP-primer combinations were tested against the genotypes of 15 clones (Marais & Marais 2001, unpublished data) and produced approximately 2000 clearly distinguishable AFLP fragments, of which 54 (3%) were polymorphic fragments. Two RAPD fragments and 4 AFLP fragments that can be used as possible markers for the presence of chromosomes that contribute to salt tolerance were identified. The interpretation of the markers was complicated by heterogeneity among plants with regard to the origin of their chromosomes and the genetic diversity of the rye genome. It is also possible that chromosome re-arrangement took place during backcrossing, which could have complicated the data.
AFRIKAANSE OPSOMMING: Versouting is een van die groot beperkende faktore op plant- en gewasgroei, omdat die opname van water en voedingstowwe so In ingewikkelde proses is en die effek van lae of matige versouting so alomteenwoordig is. Plantgroei word nadelig geaffekteer as 'n spesifieke ioonkonsentrasie sy drempelwaarde oorskry en toksies word. Die nadelige effek van soutgeaffekteerde grond op gewasproduksie, is wêreldwyd aan die toeneem (Tanji, 1990). Die vlak waartoe plante hoë konsentrasies sout kan hanteer is onder genetiese beheer met verskeie fisiologiese en genetiese meganismes wat 'n bydrae maak tot soutverdraagsaamheid (Epstein & Rains, 1987). Die mees effektiewe manier om die beperkinge op gewas produktiwiteit in versoute gebiede te oorkom, is die ontwikkeling van soutverdraagsame variëteite. Begrip van die genetika van soutverdraagsaamheid is dus noodsaaklik vir die ontwikkeling van In effektiewe telingsstrategie. Die departement Genetika (US) bedryf tans 'n wye-kruisings navorsingsprogram waarmee gepoog word om gene vir soutverdraagsaamheid na korog en koring oor te dra. Die skenkerspesie, Thinopyrum disticum, In inheemse strandkoringgras wat aangepas is by hoë konsentrasies sout, is gekruis met verboude rog (Secale cereale) in 'n poging om die oorerwing van soutverdraagsaamheid te bestudeer (Marais et al., 1998). Die hoofdoel van hierdie studie was om molekulêre merkers (RAPD en AFLP) te vind, wat assosieer met chromosome wat soutverdraagsaamheid bevorder en om nuttige merkers daar te stel vir latere pogings om die gene na korog en koring oor te dra. Ongeveer 70 klone van sekondêre hibriede (Th distichum I 4x-rog /I 2x-rog) is onderwerp aan souttoetse en het verskillende grade van soutverdraagsaamheid getoon. RAPDmerker analise is gebruik om polimorfismes te identifiseer tussen soutverdraagsame en soutsensitiewe plante. Twaalf RAPD inleiers het duidelike, ontleedbare en herhalende polimorfiese fragmente opgelewer en moontlike nuttige merkers uitgewys. Verskillende AFLP-inleier kombinasies, wat getoets is teen die genotipes van 15 klone (Marais & Marais, 2001 ongepubliseerde data) het ongeveer 2000 duidelik onderskeibare AFLP fragmente geproduseer, waarvan 54 (3%) polimorfiese fragmente was. Twee RAPD fragmente en 4 AFLP fragmente is geïdentifiseer wat as moontlike kandidaat merkers gebruik kan word vir die identifisering van chromosome wat bydra tot soutverdraagsaamheid . Die interpretasie van die merkers is bemoeilik deur heterogeniteit tussen die plante wat betref die agtergrond van chromosome wat hulle besit en die genetiese diversiteit van die rog genoom. Dit is ook moontlik dat chromosoom herrangskikking plaasgevind het tydens terugkruising, wat die data verder kon kompliseer.
Rodriguez, Miguel A. "Molecular genetic approaches to the study of aluminum tolerance and toxicity in wheat and rye /". free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060136.
Texto completoCoetzee, Kim. "Evaluation of the crossability between small grains". Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17796.
Texto completoSharma, Sundrish. "Characterization of quantitative loci for morphological and anatomical root traits on the short arm of chromosome 1 of rye in bread wheat". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1899491951&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1269025605&clientId=48051.
Texto completoIncludes abstract. Title from first page of PDF file (viewed March 18, 2010). Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
Gyawali, Yadav Prasad. "Cytological dissection and genetic analysis of rye chromosome 1R". Kyoto University, 2010. http://hdl.handle.net/2433/131902.
Texto completo0048
新制・課程博士
博士(農学)
甲第15732号
農博第1844号
新制||農||984(附属図書館)
学位論文||H22||N4467(農学部図書室)
28277
京都大学大学院農学研究科応用生物科学専攻
(主査)教授 遠藤 隆, 教授 奥野 哲郎, 准教授 中﨑 鉄也
学位規則第4条第1項該当
Curtis, Tanya Yordanova. "Genetic and environmental factors controlling acrylamide formation in wheat and rye products". Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559366.
Texto completoLibros sobre el tema "Rye Genetics"
Molski, Bogusław. An analysis of the protein content and its nutritional value in the grains of rye cultivars from collection and the determination of the amino acid composition of selected cultivars. Warszawa: Botanical Garden of the Polish Academy of Sciences, 1987.
Buscar texto completoKazman, M. Ebrahim. Eine neue Methode zur Substitution von D-Chromosomen in das A- und B-Genom des hexaploiden Triticale. Göttingen: Cuvillier, 1992.
Buscar texto completoA, Salmenkova E. y Omelʹchenko V. T, eds. Populi͡at͡sionnai͡a genetika lososevykh ryb. Moskva: Nauka, 1997.
Buscar texto completoA, Strunnikov V. y Kirpichnikov Valentin Sergeevich, eds. Genetika i selekt͡s︡ii͡a︡ ryb. 2a ed. Leningrad: Izd-vo "Nauka," Leningradskoe otd-nie, 1987.
Buscar texto completoGenetic diversity in landraces of rye (Secale cereale L.) and turnip (Brassica rapa L. ssp. rapa) from the Nordic area. Alnarp: Swedish University of Agricultural Sciences, 2000.
Buscar texto completoSergeevich, Kirpichnikov Valentin, Institut biologii mori͡a (Akademii͡a nauk SSSR) y Soviet Union Ikhtiologicheskai͡a komissii͡a, eds. Genetika v akvakulʹture: Trudy 3-go Vsesoi͡uznogo soveshchanii͡a po genetike, selekt͡sii i gibridizat͡sii ryb, Tartu, 1986 g. Leningrad: "Nauka," Leningradskoe otd-nie, 1989.
Buscar texto completoVan Heyningen, Veronica. E diteur scientifique, ed. Advances in genetics. Amsterdam: Elsevier, 2008.
Buscar texto completoVsesoi͡uznoe soveshchanie po genetike, selekt͡sii i gibridizat͡sii ryb (3rd 1986 Tartu, Estonia). Geneticheskie issledovanii͡a morskikh gidrobiontov: Materialy III Vsesoi͡uznogo soveshchanii͡a po genetike, selekt͡sii i gibridizat͡sii ryb, senti͡abrʹ 1986 g., Tartu. Moskva: Vses. nauchno-issl. in-t morskogo rybnogo khozi͡aĭstva i okeanografii, 1987.
Buscar texto completoMakoedov, A. N. Kariologii͡a︡, biokhimicheskai͡a︡ genetika i populi͡a︡t͡s︡ionnai͡a︡ fenetika lososevidnykh ryb Sibiri i Dalʹnego Vostoka: Sravnitelʹnyĭ aspekt. Moskva: UMK "Psikhologii͡a︡", 1999.
Buscar texto completoT, Leondes Cornelius, ed. Control and dynamic systems. San Diego, Calif: Academic Press, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Rye Genetics"
Geiger, H. H. y T. Miedaner. "Hybrid Rye and Heterosis". En Genetics and Exploitation of Heterosis in Crops, 439–50. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, 2015. http://dx.doi.org/10.2134/1999.geneticsandexploitation.c41.
Texto completoGill, Bikram S. y Bernd Friebe. "Cytogenetic Analysis of Wheat and Rye Genomes". En Genetics and Genomics of the Triticeae, 121–35. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_4.
Texto completoSchlegel, R., A. Ozdemir, I. Tolay, I. Cakmak, H. Saberi y M. Atanasova. "Localisation of Genes for Zinc and Manganese Efficiency in Wheat and Rye". En Plant Nutrition — Molecular Biology and Genetics, 417–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_49.
Texto completoHoffmann, Borbála y Gábor Galiba. "Interaction of Nutrient and Water Deficiency on the Development of Rye (Secale Cereale L) Genotypes". En Plant Nutrition — Molecular Biology and Genetics, 341–47. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_37.
Texto completoBolibok-Brągoszewska, Hanna y Monika Rakoczy-Trojanowska. "Molecular Marker Based Assessment of Genetic Diversity in Rye". En Sustainable Development and Biodiversity, 105–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25637-5_5.
Texto completoWheeler, D. M., D. C. Edmeades, D. R. Smith y M. E. Wedderburn. "Screening perennial rye-grass from New Zealand for aluminium tolerance". En Genetic Aspects of Plant Mineral Nutrition, 23–33. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_4.
Texto completoPuertas, María J., Guillermo Jiménez, Silvia Manzanero, A. Mauricio Chiavarino, Marcela Rosato, Carlos A. Naranjo y Lidia Poggio. "Genetic control of B chromosome transmission in maize and rye". En Chromosomes Today, 79–92. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8484-6_7.
Texto completoPerby, Harald y Paul Jensén. "Dry weight production and nitrogen efficiency in cultivars of barley and rye". En Genetic Aspects of Plant Mineral Nutrition, 45–50. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2053-8_7.
Texto completoCyran, Malgorzata, Maria Rakowska y Danuta Miazga. "Genetic Control of Non-Starch Polysaccharides in Wheat Rye Addition Lines". En Triticale: Today and Tomorrow, 233–39. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0329-6_30.
Texto completoGraham, Robin D., Julie S. Ascher, P. A. E. Ellis y K. W. Shepherd. "Transfer to wheat of the copper efficiency factor carried on rye chromosome arm 5RL". En Genetic Aspects of Plant Mineral Nutrition, 405–12. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_39.
Texto completoActas de conferencias sobre el tema "Rye Genetics"
"Molecular-genetic analysis of genome incompatibility in wheat-rye hybrids". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-206.
Texto completo"Tissue-dependent transcription of the rye centromeric histone CENH3 variants". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-058.
Texto completo"Chromatin and cytoskeleton reorganization in meiosis of wheat-rye substitution line (3R3B)". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-215.
Texto completo"Paralogous genes of centromeric histone CENH3 are actively expressed in the rye genome". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-050.
Texto completo"Progress of breeding strategies in winter rye: from mass selection to genomic selection". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-159.
Texto completo"3D-microscopy of prophase nucleus in the meiosis I of wheat-rye amphihaploids". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-106.
Texto completo"Dynamics of the transcription of CENH3 genes in allopolyploid hybrids of wheat and rye". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-060.
Texto completo"Molecular-genetic analysis of DNA plasmotype of rye-wheat secalotriticum amphidiploids (RRAABB, 2n = 42)". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-109.
Texto completo"Molecular markers of the SKr gene in the evaluation of bread wheat genotypes with different crossability with rye". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-160.
Texto completoLi, Yiming y Lin Shang. ""Re-ID BUFF"". En GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459432.
Texto completoInformes sobre el tema "Rye Genetics"
Simandl, G. J., R. J. D'Souza, S. Paradis y J. Spence. Rare-earth element content of carbonate minerals in sediment-hosted Pb-Zn deposits, southern Canadian Rocky Mountains. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328001.
Texto completoHovav, Ran, Peggy Ozias-Akins y Scott A. Jackson. The genetics of pod-filling in peanut under water-limiting conditions. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597923.bard.
Texto completoGur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor y Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, enero de 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Texto completoJones, Lee, Jenny Powers y Stephen Sweeney. Department of the Interior: History and status of bison health. National Park Service, mayo de 2021. http://dx.doi.org/10.36967/nrr-2280100.
Texto completoMengak, Michael T. Wildlife Translocation. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, julio de 2018. http://dx.doi.org/10.32747/2018.7210105.ws.
Texto completoFahima, Tzion y Jorge Dubcovsky. Map-based cloning of the novel stripe rust resistance gene YrG303 and its use to engineer 1B chromosome with multiple beneficial traits. United States Department of Agriculture, enero de 2013. http://dx.doi.org/10.32747/2013.7598147.bard.
Texto completoFreeman, Stanley y Russell J. Rodriguez. The Interaction Between Nonpathogenic Mutants of Colletotrichum and Fusarium, and the Plant Host Defense System. United States Department of Agriculture, septiembre de 2000. http://dx.doi.org/10.32747/2000.7573069.bard.
Texto completoHorwitz, Benjamin y Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, enero de 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Texto completoLevin, Ilan, John Thomas, Moshe Lapidot, Desmond McGrath y Denis Persley. Resistance to Tomato yellow leaf curl virus (TYLCV) in tomato: molecular mapping and introgression of resistance to Australian genotypes. United States Department of Agriculture, octubre de 2010. http://dx.doi.org/10.32747/2010.7613888.bard.
Texto completo