Literatura académica sobre el tema "Ruthenium"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ruthenium".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Ruthenium"

1

Pitchkov, V. N. "The Discovery of Ruthenium". Platinum Metals Review 40, n.º 4 (1 de octubre de 1996): 181–88. http://dx.doi.org/10.1595/003214096x404181188.

Texto completo
Resumen
In 1844 Karl Karlovitch Klaus, then an unknown professor at the University of Kazan, reported his discovery of a new platinum metal which he named ruthenium, afer Ruthenia, the latinised name for Russia. Besides studying the characteristics of ruthenium, Klaus conducted a wide ranging investigation of rhodium, iridium, osmium, and to a lesser extent, palladium and platinum. Thus, he may be regarded as the creator of the chemistry of the platinum metals, and the one who introduced the concept of the structure of the “double salts and bases” of platinum, which was developed some forty years later by Alfred Werner in his co-ordination theory Klaus also discovered the similarities and differences between elements in the triads: ruthenium-rhodium-palladium and osmium-iridium-platinum, so providing the justification for Dmitri Ivanovich Mendeleev to include all six platinum metals in Group VIII of the Periodic System. Klaus’s work thus marked an epoch in the investigation of the platinum metals, especially of ruthenium – the last one to be discovered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Okawara, Toru, Masaaki Abe, Shiho Ashigara y Yoshio Hisaeda. "Molecular structures, redox properties, and photosubstitution of ruthenium(II) carbonyl complexes of porphycene". Journal of Porphyrins and Phthalocyanines 19, n.º 01-03 (enero de 2015): 233–41. http://dx.doi.org/10.1142/s1088424614501120.

Texto completo
Resumen
Two ruthenium(II) carbonyl complexes of porphycene, (carbonyl)(pyridine)(2,7,12,17-tetra-n-propylporphycenato)ruthenium(II) (1) and (carbonyl)(pyridine)(2,3,6,7,12,13,16,17-octaethylpor-phycenato)ruthenium(II) (2), have been structurally characterized by single-crystal X-ray diffraction analysis. Cyclic voltammetry has revealed that the porphycene complexes undergo multiple oxidations and reductions in dichloromethane and the reduction potentials are highly positive compared to porphyrin analogs. UV-light irradiation (400 nm or shorter wavelength region) of a benzene solution of 1 and 2 containing external pyridine leads to dissociation of the carbonyl ligand from the ruthenium(II) centers to give the corresponding bis-pyridine complexes. The identical reaction has been also studied for a porphyrin derivative (carbonyl)(pyridine)(2,3,7,8,12,13,17,18-octaethylporphyriato)ruthenum(II) (3). The first-order kinetic analysis has revealed that the photosubstitution of all of the compounds occurs in the order of 10-3 s-1 at 298 K but proceeds faster for complexes of porphycene (1 and 2) than that of porphyrin (3).
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Abbott, Daniel F., Sanjeev Mukerjee, Valery Petrykin, Zdeněk Bastl, Niels Bendtsen Halck, Jan Rossmeisl y Petr Krtil. "Oxygen reduction on nanocrystalline ruthenia – local structure effects". RSC Advances 5, n.º 2 (2015): 1235–43. http://dx.doi.org/10.1039/c4ra10001h.

Texto completo
Resumen
Nanocrystalline ruthenium dioxide and doped ruthenia of the composition Ru1−xMxO2 (M = Co, Ni, Zn) with 0 ≤ x ≤ 0.2 were prepared by the spray-freezing freeze-drying technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Murakami, Yoshitaka, Jinwang Li, Daisuke Hirose, Shinji Kohara y Tatsuya Shimoda. "Solution processing of highly conductive ruthenium and ruthenium oxide thin films from ruthenium–amine complexes". Journal of Materials Chemistry C 3, n.º 17 (2015): 4490–99. http://dx.doi.org/10.1039/c5tc00675a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ducati, Caterina, Darryl H. Dawson, John R. Saffell y Paul A. Midgley. "Ruthenium-coated ruthenium oxide nanorods". Applied Physics Letters 85, n.º 22 (29 de noviembre de 2004): 5385–87. http://dx.doi.org/10.1063/1.1829170.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

P., Tsvetkova,, Salnikova, K., Bykov, A., Matveeva, V. y Sulman, M. "XPS Study of Composite Systems Based on Ruthenium". Bulletin of Science and Practice, n.º 1 (15 de enero de 2023): 32–40. http://dx.doi.org/10.33619/2414-2948/86/04.

Texto completo
Resumen
Based on the analysis of survey XPS spectra of 3%Ru/Al2O3 and 3%Ru/SPS catalyst samples before and after the catalytic test, the qualitative and quantitative elemental composition of the surface of these samples was established. Conditions for the 3% Ru/Al2O3 catalyst before the catalytic test of hydrated ruthenium (IV) was 23% and ruthenium (IV) oxide — 45%, respectively, and after — hydrated ruthenium (IV) was 21% and ruthenium (IV) oxide — 37%, respectively. Conditions for the catalyst 3% Ru/SPS before the catalytic test hydrated ruthenium (IV) was 29% and ruthenium (IV) oxide — 3%, respectively, and after — hydrated ruthenium (IV) was 22% and ruthenium (IV) oxide — 2 %, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kanaoujiya, Rahul y Shekhar Srivastava. "Coordination Chemistry of Ruthenium". Research Journal of Chemistry and Environment 25, n.º 9 (25 de agosto de 2021): 103–6. http://dx.doi.org/10.25303/259rjce103106.

Texto completo
Resumen
Ruthenium is one of the rare elements that belongs to the platinum group metals. Ruthenium is very effective hardener for platinum and palladium. Well studied coordination and organometallic chemistry of ruthenium results in a various varieties of compounds. There are various features of ruthenium such as oxidation states, coordination numbers and geometries. Ruthenium compounds have various applications and also have low toxicity and they are ideal for the catalytic synthesis of drugs. The field of ruthenium chemistry is very broad and is extremely diverse in the field of catalysis and medicinal chemistry. This review article shows a classical general chemistry of ruthenium compounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Saá, Carlos, Damián Padín y Jesús A. Varela. "Recent Advances in Ruthenium-Catalyzed Carbene/Alkyne Metathesis (CAM) Transformations". Synlett 31, n.º 12 (31 de marzo de 2020): 1147–57. http://dx.doi.org/10.1055/s-0039-1690861.

Texto completo
Resumen
Carbene intermediates have shown versatile applications in modern synthetic chemistry. Catalytic ruthenium carbene/alkyne metathesis (CAM) with readily available substrates renders an efficient procedure for the in situ generation of ruthenium vinyl carbene intermediates. Here, recent advances in synthetic applications of ruthenium-catalyzed carbene/alkyne metathesis (CAM) are highlighted.1 Introduction2 Ruthenium Vinyl Carbenes through Carbene/Alkyne Metathesis (CAM)3 Nonpolar Transformations of Ruthenium Vinyl Carbenes4 Polar Transformations of Ruthenium Vinyl Carbenes4.1 Intramolecular Ruthenium-Catalyzed [1,5]- and [1,6]-Hydride Transfer/Cyclization4.2 Heterocyclizations of Alkynals and Alkynones4.3 Heterocyclizations of ortho-(Alkynyloxy)benzylamines5 DFT Studies on the Stereoselectivity of the CAM Reaction6 Conclusions
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Thiere, Alexandra, Hartmut Bombach y Michael Stelter. "The Behavior of Ruthenium in Copper Electrowinning". Metals 12, n.º 8 (27 de julio de 2022): 1260. http://dx.doi.org/10.3390/met12081260.

Texto completo
Resumen
The recycling of material containing precious metals can lead to the entry of ruthenium into the copper electrowinning process, by so far unknown effects. There, ruthenium is oxidized to highly volatile ruthenium tetroxide. In order to avoid ruthenium losses during electrolysis, the oxidation behavior of ruthenium in copper electrowinning was investigated by testing different oxygen overvoltages using lead alloy and diamond anodes. Furthermore, the temperature and the current density were varied to investigate a possible chemical or electrochemical reaction. The results of the study show that ruthenium is not directly electrochemically oxidized to ruthenium tetroxide at the anode. Especially at anodes with high oxygen overvoltage, the formation of other oxidants occurs parallel to the oxygen evolution in the electrolyte. These oxidants oxidize ruthenium compounds to highly volatile ruthenium tetroxide by chemical reactions. These reactions depend mainly on temperature; the formation of the active oxidants depends on the anodic potential. To avoid ruthenium losses in the copper electrowinning process, anodes with a low anodic potential should be used at low electrolyte temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Corbalan-Garcia, S., J. A. Teruel y J. C. Gomez-Fernandez. "Characterization of ruthenium red-binding sites of the Ca2+-ATPase from sarcoplasmic reticulum and their interaction with Ca2+-binding sites". Biochemical Journal 287, n.º 3 (1 de noviembre de 1992): 767–74. http://dx.doi.org/10.1042/bj2870767.

Texto completo
Resumen
Sarcoplasmic reticulum Ca(2+)-ATPase has previously been shown to bind and dissociate two Ca2+ ions in a sequential mode. This behaviour is confirmed here by inducing sequential Ca2+ dissociation with Ruthenium Red. Ruthenium Red binds to sarcoplasmic reticulum vesicles (6 nmol/mg) with a Kd = 2 microM, producing biphasic kinetics of Ca2+ dissociation from the Ca(2+)-ATPase, decreasing the affinity for Ca2+ binding. Studies on the effect of Ca2+ on Ruthenium Red binding indicate that Ruthenium Red does not bind to the high-affinity Ca(2+)-binding sites, as suggested by the following observations: (i) micromolar concentrations of Ca2+ do not significantly alter Ruthenium Red binding to the sarcoplasmic reticulum; (ii) quenching of the fluorescence of fluorescein 5′-isothiocyanate (FITC) bound to Ca(2+)-ATPase by Ruthenium Red (resembling Ruthenium Red binding) is not prevented by micromolar concentrations of Ca2+; (iii) quenching of FITC fluorescence by Ca2+ binding to the high-affinity sites is achieved even though Ruthenium Red is bound to the Ca(2+)-ATPase; and (iv) micromolar Ca2+ concentrations prevent inhibition of the ATP-hydrolytic capability by dicyclohexylcarbodi-imide modification, but Ruthenium Red does not. However, micromolar concentrations of lanthanides (La3+ and Tb3+) and millimolar concentrations of bivalent cations (Ca2+ and Mg2+) inhibit Ruthenium Red binding as well as quenching of FITC-labelled Ca(2+)-ATPase fluorescence by Ruthenium Red. Studies of Ruthenium Red binding to tryptic fragments of Ca(2+)-ATPase, as demonstrated by ligand blotting, indicate that Ruthenium Red does not bind to the A1 subfragment. Our observations suggest that Ruthenium Red might bind to a cation-binding site in Ca(2+)-ATPase inducing fast release of the last bound Ca2+ by interactions between the sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Ruthenium"

1

Barth, Michael. "Polyolato-Komplexe mit Ruthenium(II), Ruthenium(VI) und Osmium(VI)". Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-43966.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Taylor, Daniel M. "Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115169/.

Texto completo
Resumen
Cyclic voltammetry experiments were performed to compare the electrodeposition characteristics of bismuth on ruthenium. Two types of electrodes were used for comparison: a Ru shot electrode (polycrystalline) and a thin film of radio-frequency sputtered Ru on a Ti/Si(100) support. Experiments were performed in 1mM Bi(NO3)3/0.5M H2SO4 with switching potentials between -0.25 and 0.55V (vs. KCl sat. Ag/AgCl) and a 20mV/s scan rate. Grazing incidence x-ray diffraction (GIXRD) determined the freshly prepared thin film electrode was hexagonally close-packed. After thermally oxidizing at 600°C for 20 minutes, the thin film adopts the tetragonal structure consistent with RuO2. a hydrated oxide film (RuOx?(H2O)y) was made by holding 1.3V on the surface of the film in H2SO4 for 60 seconds and was determined to be amorphous. Underpotential deposition of Bi was observed on the metallic surfaces and the electrochemically oxidized surface; it was not observed on the thermal oxide.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Keceli, Ezgi. "Ruthenium(iii) Acetylacetonate". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607230/index.pdf.

Texto completo
Resumen
Ruthenium(III) acetylacetonate was employed for the first time as homogeneous catalyst in the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was not reduced by sodium borohydride under the experimental conditions and remains unchanged after the catalysis, as shown by FT-IR and UV-Vis spectroscopic characterization. Poisoning experiments with mercury, carbon disulfide or trimethylphosphite provide compelling evidence that ruthenium(III) acetylacetonate is indeed a homogenous catalyst in the hydrolysis of sodium borohydride. Kinetics of the ruthenium(III) acetylacetonate catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first order with respect to both the substrate concentration and catalyst concentration. The activation parameters of this reaction were also determined from the evaluation of the kinetic data: activation energy
Ea = 25.6 &
#61617
&
#61472
1.3 kJ.mol-1, the enthalpy of activation
&
#8710
H# = 24.6 ±
1.2 kJ.mol-1 and the entropy of activation &
#8710
S# = -170 ±
5 J&
#61655
mol-1&
#61655
K-1. Ruthenium(III) acetylacetonate provides the lowest activation energy ever found for the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was found to be highly active catalyst providing 1183 total turnovers in the hydrolysis of sodium borohydride over 180 min before they are deactivated. The recorded turnover frequency (TOF) is 6.55 min-1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bates, Richard Simon. "Arene ruthenium chemistry". Thesis, University of Nottingham, 1990. http://eprints.nottingham.ac.uk/11890/.

Texto completo
Resumen
This thesis describes the synthesis and reactivity studies of new arene-ruthenium(II) and arene-ruthenium(O) complexes. Ultrasound has been investigated as an alternative energy source, with the overall aim of synthesising arene ruthenium clusters. Chapter 1 gives an introduction and summary of the known arene ruthenium chemistry reported to date. Chapter 2 reports the synthesis of (CGH6)Ru(C2H4)2 and (MeC6H4CHMe2)Ru(C2H4)2. Low temperature protonation studies generated (C6H6)Ru(H)(CZH4)2' and (MeC6H4CHMe2)Ru(H)(C2H4)7ý. These are observed by 1H nmr spectroscopy to undergo two dynamic processes, rotation of the ethylene ligands and an exchange between the hydride and the hydrogens of the ethylenes. On protonation with trifluoroacetic acid (C6H6)Ru(02CCF3)2 has been shown to be the final product. Nucleophilic substitution investigations of the bis(ethylene) complexes has determined that the arene is more labile than the coordinated ethylene. Chapter 3 reports the generation of a reactive intermediate, [(MeC6H4CHMez)Ru(THF)2]", and the reactions it undergoes. The synthesis and stereochemistry of the new complexes [(MeC6H4CHMe2)RuBr(C3H5)] and Ru(H)[(C6H40) (OPh)2][P(OPh)3]3 are reported. Chapter 4 describes the successful synthesis of the project goal, with the formation of the trimer [(MeC. H., CHMe2)3Ru3Se,_1` and the tetra nuclear species [(MeC6H4CHMe2)4Ru4H4]2'. Electrochemistry shows both complexes undergo two, one-electron reversible reductions to generate their neutral analogues. Ru3(CO)12 was formed when arene ruthenium carbonyl clusters were sought. Chapter 5 reports the formation and reactivity of arene ruthenium complexes containing nitrogen based ligands. The half sandwich complexes, (arene)RuCl2(NH2R) (arene = C6H6, R= Et, CMe, C6H4Me; McC6H4CHMe2, R=CMe3) and (C. H6)RuCl(NHZCGH4Me)Z' have been synthesised in good yield. However, these complexes are not synthetically useful as substrates for cluster synthesis, although (C6H6)RuC12(NH2CMe3) can be converted to the mixed ethoxide-halide dimer, [(C6H6)Ru(OEt)]2Cl`. Me3SiN3 on reaction with [(MeC6H4CHMe2)RuC12]2 affords [(MeC6H4CHMe2)RuCl(N3)]Z. An X-ray crystal structure determination of this complex showed the nitrogens bridging the two ruthenium atoms are pyramidal rather than the expected planar in geometry. [(MeC6H4CHMe2)RuCl(N3)]2 undergoes chloride loss to form the triply bridged dimer, [(MeCGH4CHMe2)RuCl(N3)z]', and bridge cleavage to form [(MeC, H4CHMe2)RuCl(N3)PPh3]. The latter complex is believed to undergo disproportionation in solution. Conclusions and future directions of the project are discussed in chapter. 6. The appendix provides a discussion of ultrasound proposed structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Smith, Paul David. "Arene-ruthenium chemistry". Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Dutton, Tom. "Ruthenium carbido clusters". Thesis, University of Cambridge, 1989. https://www.repository.cam.ac.uk/handle/1810/290027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Stemmler, Marco. "Ruthenium-Thiozimtaldehyd-Komplexe". Doctoral thesis, [S.l. : s.n.], 2002. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-4050.

Texto completo
Resumen
Der erste Teil der vorliegenden Arbeit befasst sich mit der Darstellung neuer achiraler und chiraler kationischer Ruthenium-Bis(phosphan)-Thiozimtaldehyd-Komplexe. Die Umsetzung der chiralen Hydrogensulfid-Komplexe mit unterschiedlich substituierten Zimtaldehyden in Anwesenheit von Trifluoressigsäure führt zu den chiralen Thiozimtaldehyd-Komplexen. Im zweiten Teil dieser Arbeit wird gezeigt, dass Thiozimtaldehyd-Komplexe bereitwillig Hetero-Diels-Alder-Reaktionen eingehen. Derartige Reaktionen können mit freien Vertretern dieser Spezies aufgrund deren Instabilität nur schwierig durchgeführt werden. Der dritte Teil der vorliegenden Arbeit befasst sich mit Cycloadditionsreaktionen der Thiozimtaldehyd-Komplexe mit 1,3-dipolaren Reagenzien. In einem weiteren Teil dieser Arbeit wird die Abspaltung der Thioether-Liganden vom Komplexfragment untersucht
The first part of the present work deals with the synthesis of new achiral and chiral cationic Ru-bis(phosphane)-thiocinnamaldehyde complexes. The reaction of the chiral hydrogensulfido complexes with various substituted cinnamaldehydes in the presence of trifluoroacetic acid gives the chiral thiocinnamaldehyde complexes. In the second part of this work it is demonstrated that the thiocinnamaldehyde complexes readily undergo hetero-Diels-Alder-reactions. The third part of this work deals with cycloaddition reactions of thiocinnamaldehyde complexes with 1,3 dipolar molecules. In a further part of this work the elimination reactions of the thiopyran ligands from the complex fragments are examined
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Liao, Wen, Daniel Bost y John G. Ekerdt. "Growth of Ultra-thin Ruthenium and Ruthenium Alloy Films for Copper Barriers". Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-207151.

Texto completo
Resumen
We report approaches to grow ultrathin Ru films for application as a seed layer and Cu diffusion barrier. For chemical vapor deposition (CVD) with Ru3(CO)12 we show the role surface hydroxyl groups have in nucleating the Ru islands that grow into a continuous film in a Volmer-Weber process, and how the nucleation density can be increased by applying a CO or NH3 overpressure. Thinner continuous films evolve in the presence of a CO overpressure. We report an optimun ammonia overpressure for Ru nucleation and that leads to deposition of smoother Ru thin films. Finally, we report a comparison of amorphous Ru films that are alloyed with P or B and demonstrate 3-nm thick amorphous Ru(B) films function as a Cu diffusion barrier.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kim, Young Dok. "Atomic scale structure and catalytic reactivity of RuO2". [S.l. : s.n.], 2000. http://www.diss.fu-berlin.de/2000/121/index.html.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Denzler, Daniel N. "Zur ultraschnellen Reaktionsdynamik von Wasserstoff und Grenzflächenstruktur von Wasser auf der Ru(001)-Oberfläche". [S.l. : s.n.], 2003. http://www.diss.fu-berlin.de/2003/178/index.html.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Ruthenium"

1

Browne, Wesley R., Alvin A. Holder, Mark A. Lawrence, Jimmie L. Bullock Jr y Lothar Lilge, eds. Ruthenium Complexes. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527695225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schubert, Ulrich S., Andreas Winter y George R. Newkome. Ruthenium-Containing Polymers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75598-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dixneuf, Pierre H. y Christian Bruneau, eds. Ruthenium in Catalysis. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08482-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Griffith, William P. Ruthenium Oxidation Complexes. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9378-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

1937-, Murahashi Shunʾichi, ed. Ruthenium in organic synthesis. Weinheim: Wiley-VCH, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Schlepphorst, Christoph. Ruthenium-NHC-katalysierte asymmetrische Arenhydrierung. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08967-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bruneau, Christian y Pierre H. Dixneuf, eds. Ruthenium Catalysts and Fine Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b10989.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Watson, David B. Ruthenium: Properties, production, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

C, Bruneau y Dixneuf P. H, eds. Ruthenium catalysts and fine chemistry. Berlin: Springer, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Klerk-Engels, Barbara de. Organometallic excursions into ruthenium chemistry. [s.l.]: [s.n.], 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Ruthenium"

1

Kurtz, Wolfgang y Hans Vanecek. "Ruthenium". En W Tungsten, 288–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-08690-2_29.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Meisel, Thomas C. "Ruthenium". En Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_261-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Meisel, Thomas C. "Ruthenium". En Encyclopedia of Earth Sciences Series, 1318–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Turova, Nataliya. "Ruthenium". En Inorganic Chemistry in Tables, 100–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20487-6_38.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Brookins, Douglas G. "Ruthenium". En Eh-pH Diagrams for Geochemistry, 86–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73093-1_33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rasmussen, Seth C. "Karen J. Brewer (1961-2014)". En Ruthenium Complexes, 1–23. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Matos, António, Filipa Mendes, Andreia Valente, Tânia Morais, Ana Isabel Tomaz, Philippe Zinck, Maria Helena Garcia, Manuel Bicho y Fernanda Marques. "Ruthenium-Based Anticancer Compounds: Insights into Their Cellular Targeting and Mechanism of Action". En Ruthenium Complexes, 201–19. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gill, Martin R. y Jim A. Thomas. "Targeting cellular DNA with Luminescent Ruthenium(II) Polypyridyl Complexes". En Ruthenium Complexes, 221–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kljun, Jakob y Iztok Turel. "Biological Activity of Ruthenium Complexes With Quinoline Antibacterial and Antimalarial Drugs". En Ruthenium Complexes, 239–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ramos, Loyanne C. B., Juliana C. Biazzotto, Juliana A. Uzuelli, Renata G. de Lima y Roberto S. da Silva. "Ruthenium Complexes as NO Donors". En Ruthenium Complexes, 257–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Ruthenium"

1

Basu, Anirban, Ryan Hennessy, George Adams y Nicol McGruer. "Reliability in Hot Switched Ruthenium on Ruthenium MEMS Contacts". En 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013). IEEE, 2013. http://dx.doi.org/10.1109/holm.2013.6651422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schlag, Leslie, Richard Grau, Mobassar Hossain, Helene Nahrstedt, Nishchay Angel Isaac, Johannes Reiprich, Jorg Pezoldt y Heiko Otto Jacobs. "Self-Aligning Ruthenium Interconnects". En 2020 IEEE International Interconnect Technology Conference (IITC). IEEE, 2020. http://dx.doi.org/10.1109/iitc47697.2020.9515654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Suopaja¨rvi, Atso, Teemu Ka¨rkela¨, Ari Auvinen y Ilona Lindholm. "Effects of Ruthenium Release in Oxidizing Conditions on a BWR Source Term". En 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75946.

Texto completo
Resumen
The release of ruthenium in oxygen-rich conditions from the reactor core during a severe accident may lead to formation of significantly more volatile ruthenium oxides than produced in steam atmosphere. The effect of volatile ruthenium release in a case a reference BWR nuclear plant was studied to get rough-estimates of the effects on the spreading of airborne ruthenium inside the containment and reactor building and the fission product source term. The selected accident scenario starting during shutdown conditions with pressure vessel upper head opened was a LOCA with a break in the bottom of the RPV. The results suggest that there is a remarkable amount of airborne Ru in the containment atmosphere, unlike with the standard MELCOR Ru release model which predicts no airborne Ru at all in the selected case. The total release of ruthenium from the core can be 5000 times the release predicted by the standard model. Based on the performed plant scoping studies it seems reasonable to take the release of volatile ruthenium oxides into account when assessing source terms for plants during shutdown states.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mikheenko, I. P., J. Gomez-Bolivar, M. Merroun, S. Sharma y L. E. Macaskie. "High resolution electron microscopy study of biologically derived ruthenium and palladium/ruthenium nanoparticles". En 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757229.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Liang Gong Wen, Christoph Adelmann, Olalla Varela Pedreira, Shibesh Dutta, Mihaela Popovici, Basoene Briggs, Nancy Heylen et al. "Ruthenium metallization for advanced interconnects". En 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC). IEEE, 2016. http://dx.doi.org/10.1109/iitc-amc.2016.7507651.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pedreira, O. Varela, M. Stucchi, A. Gupta, V. Vega Gonzalez, M. van der Veen, S. Lariviere, C. J. Wilson, Zs Tokei y K. Croes imec. "Metal reliability mechanisms in Ruthenium interconnects". En 2020 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2020. http://dx.doi.org/10.1109/irps45951.2020.9129087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zaltariov, Mirela-Femanda, Maria Butnaru y Dragos Peptanariu. "Cytotoxicity Evaluation of New Ruthenium Complexes". En 2019 E-Health and Bioengineering Conference (EHB). IEEE, 2019. http://dx.doi.org/10.1109/ehb47216.2019.8969978.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wells, Brian. "Ruthenium Oxide Super-Capacitor Performance Stability". En Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-3221.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Brandi, A., S. Caporali, S. Cicchi, L. Lascialfari, M. Muniz-Miranda, S. Orazzini, M. Severi, Francis Leonard Deepak y E. Giorgetti. "Stable Ruthenium colloids by laser ablation". En 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rack, Jeffrey J., Maksim Y. Livshits y Jisoo Shin. "Photonastic effects in ruthenium sulfoxide polymers". En SPIE Organic Photonics + Electronics, editado por Joy E. Haley, Jon A. Schuller, Manfred Eich y Jean-Michel Nunzi. SPIE, 2016. http://dx.doi.org/10.1117/12.2237391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Ruthenium"

1

Kumar, Naresh. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica. Office of Scientific and Technical Information (OSTI), febrero de 1999. http://dx.doi.org/10.2172/348888.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zanzi, I., S. C. Srivastava, G,E Meinken, W. Robeson, L. F. Mausner, R. G. Fairchild y D. Margouleff. New cholescintigraphic agent: ruthenium-97-DISIDA. Office of Scientific and Technical Information (OSTI), junio de 1986. http://dx.doi.org/10.2172/5245276.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Abrevaya, H. The development of a selective ruthenium catalyst. Office of Scientific and Technical Information (OSTI), enero de 1988. http://dx.doi.org/10.2172/7191969.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Abrevaya, H. The development of a selective ruthenium catalyst. Office of Scientific and Technical Information (OSTI), enero de 1987. http://dx.doi.org/10.2172/7191970.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Spencer, Barry B. y Stephanie H. Bruffey. Initial Series of Ruthenium Adsorption Optimization Studies. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1479744.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tresa M. Pollock. Ruthenium Aluminides: Deformation Mechanisms and Substructure Development. Office of Scientific and Technical Information (OSTI), mayo de 2005. http://dx.doi.org/10.2172/877368.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Auburn, P. R., E. S. Dodsworth, M. A. Haga, W. Liu y W. A. Nevin. Bis(Dioxolene)Bis(Pyridine)Ruthenium Redox Series. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1991. http://dx.doi.org/10.21236/ada240290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Voelker, Dirk. Interactions of Ruthenium Red with Phospholipid Vesicles. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.6757.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chavez, Donna L. Microscopic Understanding of Fischer-Tropsch Synthesis on Ruthenium. Office of Scientific and Technical Information (OSTI), octubre de 2014. http://dx.doi.org/10.2172/1172907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Abrevaya, H. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst. Office of Scientific and Technical Information (OSTI), enero de 1991. http://dx.doi.org/10.2172/7154487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía