Literatura académica sobre el tema "Rossby waves"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Rossby waves".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Rossby waves"
Knessl, Charles y Joseph B. Keller. "Rossby Waves". Studies in Applied Mathematics 94, n.º 4 (mayo de 1995): 359–76. http://dx.doi.org/10.1002/sapm1995944359.
Texto completoMüller, Detlev. "Trapped Rossby waves". Physical Review E 61, n.º 2 (1 de febrero de 2000): 1468–85. http://dx.doi.org/10.1103/physreve.61.1468.
Texto completoCheverry, Christophe, Isabelle Gallagher, Thierry Paul y Laure Saint-Raymond. "Trapping Rossby waves". Comptes Rendus Mathematique 347, n.º 15-16 (agosto de 2009): 879–84. http://dx.doi.org/10.1016/j.crma.2009.05.007.
Texto completoBiancofiore, L. y F. Gallaire. "Counterpropagating Rossby waves in confined plane wakes". Physics of Fluids 24, n.º 7 (julio de 2012): 074102. http://dx.doi.org/10.1063/1.4729617.
Texto completoAvalos-Zuniga, R., F. Plunian y K. H. Rädler. "Rossby waves andα-effect". Geophysical & Astrophysical Fluid Dynamics 103, n.º 5 (octubre de 2009): 375–96. http://dx.doi.org/10.1080/03091920903006099.
Texto completoMiles, John. "Resonantly Forced Rossby Waves". Journal of Physical Oceanography 15, n.º 4 (abril de 1985): 467–74. http://dx.doi.org/10.1175/1520-0485(1985)015<0467:rfrw>2.0.co;2.
Texto completoFedotova, Maria, Dmitry Klimachkov y Arakel Petrosyan. "Resonant interactions of magneto-Poincaré and magneto-Rossby waves in quasi-two-dimensional rotating astrophysical plasma". Monthly Notices of the Royal Astronomical Society 509, n.º 1 (14 de octubre de 2021): 314–26. http://dx.doi.org/10.1093/mnras/stab2957.
Texto completoSong, Jian y ShaoXia Liu. "The barotropic Rossby waves with topography on the earth’s δ-surface". International Journal of Nonlinear Sciences and Numerical Simulation 21, n.º 7-8 (18 de noviembre de 2020): 781–88. http://dx.doi.org/10.1515/ijnsns-2019-0178.
Texto completoDikpati, Mausumi, Peter A. Gilman, Gustavo A. Guerrero, Alexander G. Kosovichev, Scott W. McIntosh, Katepalli R. Sreenivasan, Jörn Warnecke y Teimuraz V. Zaqarashvili. "Simulating Solar Near-surface Rossby Waves by Inverse Cascade from Supergranule Energy". Astrophysical Journal 931, n.º 2 (1 de junio de 2022): 117. http://dx.doi.org/10.3847/1538-4357/ac674b.
Texto completoKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO y P. K. SHUKLA. "Rossby-wave driven zonal flows in the ionospheric E-layer". Journal of Plasma Physics 73, n.º 1 (febrero de 2007): 131–40. http://dx.doi.org/10.1017/s0022377806004351.
Texto completoTesis sobre el tema "Rossby waves"
Cotto, Amaryllis. "Intermittently Forced Vortex Rossby Waves". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/553.
Texto completoProehl, Jeffrey A. "Equatorial wave-mean flow interaction : the long Rossby waves /". Thesis, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/10960.
Texto completoMurphy, Darryl Guy. "Rossby waves in the Southern Ocean". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303178.
Texto completoWood, R. G. "Rossby waves in mid-latitude oceans". Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379474.
Texto completoKovalam, Sujata. "MF radar observations of tides and planetary waves". Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phk878.pdf.
Texto completoFyfe, John. "A barotropic stability study of free and forced planetary waves /". Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75433.
Texto completoThe frequencies of all infinitesimal perturbations to the equilibrium flows are determined numerically as a function of the flow parameters. The results are interpreted using a truncated spectral model and related to those of previous studies with infinite $ beta$-planes. In contrast to some earlier analytical studies we find that unstable long waves $(L sb{x}$ $>$ $L sb{y})$ exist under superresonant conditions. We also report on the existence of an interesting travelling topographic instability.
The linear instability of a weakly non-zonal flow is investigated numerically and analytically (via WKB theory). The theory reproduces the qualitative nature of the numerically-determined fastest-growing mode.
Nonlinear integrations, involving many degrees of freedom, reveal that initially-infinitesimal disturbances may grow explosively to finite-amplitude. The longer-term integrations are interpreted using a statistical mechanical model.
Giannitsis, Constantine 1971. "Non-linear saturation of vertically propagating Rossby waves". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/53043.
Texto completoIncludes bibliographical references (p. 203-208).
Linear quasi-geostrophic theory predicts an exponential amplitude increase with height for Rossby waves propagating vertically through a stratified atmosphere, as a result of wave activity density conservation. At the same time layer-wise conservation of potential enstrophy constrains wave amplitudes, given the limited amount of potential enstrophy available in the initial mean flow. A break down of linear theory is thus expected above a certain critical wave amplitude, raising the question of how the non-linear flow reacts to limit the vertical penetration of waves. Keeping in mind the potential importance for the dynamics of the winter stratosphere, where strong wave penetration and amplitude growth are often observed, the issue of wave saturation in a non-linear flow is examined in a generally abstract context, through a variety of simple model studies. We thus consider the cases of a topographically forced barotropic beta plane channel model, of vertical propagation through a three-dimensional beta plane channel model, and of a polar coordinate model with realistic basic state and geometry. In the barotropic model transient wave growth is forced through the use of bottom topography and the deviations of the non-linear flow evolution from the predictions of both a linear and a quasi-linear analytical solution are examined for strong topographic anomalies. The growth of the forced wave is found to decelerate the zonal mean flow which in turn reduces the topographic forcing. Wave-mean flow interactions are thus found to be sufficient in leading to saturation of the eddy amplitudes. Interestingly it is the formation of zonal mean easterlies, rather than the depletion of mean available potential enstrophy, that is found to be the crucial factor in the saturation dynamics. Similar results are obtained for the case of vertical propagation through a three dimensional beta plane channel. The vertical penetration of the forced wave is shown to cause a reduction of the zonal mean winds and mean potential vorticity gradients in the center of the channel, eventually leading to the formation of either a critical line or a refractive index turning surface. In both cases the penetration of the wave to high altitudes is prohibited, thus constraining wave amplitudes. While signs of non-linear behaviour are clear in synoptic maps of potential vorticity, wave-wave interactions are found to play a secondary role in the saturation process. The results of the three-dimensional beta plane channel model are then extended to a more realistic set-up, using a polar coordinate model with a basic state based on the observed winter stratosphere climatology. The basic conclusions of the idealized study are shown to remain unchanged.
by Constantine Giannitsis.
Ph.D.
Ash, Ellis R. "Rossby waves and mean currents in the Southern Ocean". Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/11542.
Texto completoYang, Gui-Ying. "Propagation of nonstationary Rossby waves and extratropical-tropical interaction". Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646005.
Texto completoJonsson, Eskil. "Modelling the Formation and Propagation of Orographic Rossby Waves". Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325188.
Texto completoOrografiska Rossby-vågor är den huvudsakliga mekanismen genom vilken jetströmmarnaslingrar runt jorden och kan ha en omfattande inverkan på väder och klimat (kapitel 1). Därförär de av särskild betydelse att studera och detta projekt bör fungera som en utgångspunkt förvad man måste överväga när man försöker modellera dessa vågor. Till exempel så måste vi tahänsyn till tryckgradienter, Coriolis-effekten, orografi, potentiell vorticitetsbevarande och ävenjordens krökning på denna skala. Dessa beskrivs i detalj i kap. 2 och anpassas tillrörelseekvationerna för grunt vatten (Saint-Venant-ekvationerna). Därefter presenteras någranumeriska tekniker på grundläggande nivå för att lösa dessa ekvationer i kap. 2.4, varvid desedan implementeras för de globala Saint-Venant-ekvationerna med bevarad potentiellvorticitet i kap 3. Modellen är validerad för typiska grunda vattenflöden i ett badkar ochpasserar vanliga numeriska tester så som Gauss-kurvtestet (kap. 4.1) och bore-testet. Mennär vi överväger atmosfäriska flöden (kap. 4.2) blir det tydligt att våra modeller och numeriskametoder är primitiva och inte kan reproducera Rossby-vågor på ett stabilt sätt. Därmed,modifierar vi Hogans modell (Hogan, n.d) för att passa vår modell vilket resulterar orografiskaRossby-vågor. Dock så är dessa förskjutna och stämmer inte riktigt överens med teorin i kap.2.2. Även Hogans modell visar sig ha allvarliga begränsningar då vågorna propagerar i felriktning. Därmed är denna studie ej komplett och kräver ytterligare utveckling för att varaanvändbar.
Libros sobre el tema "Rossby waves"
United States. National Aeronautics and Space Administration., ed. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Buscar texto completoJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Buscar texto completoJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Buscar texto completoR, Ziemke J. y United States. National Aeronautics and Space Administration., eds. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Buscar texto completoVolland, Hans. Atmospheric tidal and planetary waves. Dordrecht: Kluwer Academic Publishers, 1988.
Buscar texto completoChiu, Ching-Sang. Estimation of planetary wave parameters from the data of the 1981 Ocean Acoustic Tomography Experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.
Buscar texto completoR, Reiter Elmar y United States. National Aeronautics and Space Administration., eds. Atmospheric planetary wave response to external forcing: Final technical report, NASA grant NAG 5-136. [Washington, D.C: National Aeronautics and Space Administration, 1985.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Rossby waves"
Zeytounian, Radyadour. "Rossby Waves". En Asymptotic Modeling of Atmospheric Flows, 44–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_4.
Texto completoMonin, A. S. "Rossby Waves". En Theoretical Geophysical Fluid Dynamics, 237–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1_7.
Texto completoPedlosky, Joseph. "Rossby Waves". En Waves in the Ocean and Atmosphere, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_14.
Texto completoKamenkovich, V. M., M. N. Koshlyakov y A. S. Monin. "Theory of Rossby Waves". En Synoptic Eddies in the Ocean, 34–130. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4502-9_2.
Texto completoPedlosky, Joseph. "Rossby Waves (Continued), Quasi-Geostrophy". En Waves in the Ocean and Atmosphere, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_15.
Texto completoDolzhansky, Felix V. "The Obukhov–Charney Equation; Rossby Waves". En Fundamentals of Geophysical Hydrodynamics, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31034-8_7.
Texto completoSkiba, Yuri N. "Stability of Rossby-Haurwitz (RH) Waves". En Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere, 109–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65412-6_5.
Texto completoBoyd, John P. "Kelvin, Yanai, Rossby and Gravity Waves". En Dynamics of the Equatorial Ocean, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_3.
Texto completoPedlosky, Joseph. "Energy and Energy Flux in Rossby Waves". En Waves in the Ocean and Atmosphere, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_16.
Texto completoSardeshmukh, Prashant, Cécile Penland y Matthew Newman. "Rossby waves in a stochastically fluctuating medium". En Stochastic Climate Models, 369–84. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8287-3_17.
Texto completoActas de conferencias sobre el tema "Rossby waves"
Zaqarashvili, T. V. y Ivan Zhelyazkov. "Rossby Waves in Rotating Magnetized Fluids". En SPACE PLASMA PHYSICS: School of Space Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137937.
Texto completoSukoriansky, Semion, Nadejda Dikovskaya, Roger Grimshaw y Boris Galperin. "Rossby waves and zonons in zonostrophic turbulence". En WAVES AND INSTABILITIES IN SPACE AND ASTROPHYSICAL PLASMAS. AIP, 2012. http://dx.doi.org/10.1063/1.3701355.
Texto completoChen, Y. N., U. Haupt, U. Seidel y M. Rautenberg. "Experimental Investigation of the Longitudinal-Vortex-Nature of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors". En ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-099.
Texto completoShevkar, Prafulla P., Anoop M V, Philippe Odier y Manikandan Mathur. "Video: Experimental visualization of Rossby waves as transport barriers". En 76th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2023. http://dx.doi.org/10.1103/aps.dfd.2023.gfm.v0009.
Texto completoCampbell, L. J. "Nonlinear dynamics of Rossby waves in a western boundary current". En ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06045.
Texto completoChu, Peter C. y Chin-Lung Fang. "Observed Rossby waves in the South China Sea from satellite altimetry data". En Remote Sensing, editado por Charles R. Bostater, Jr. y Rosalia Santoleri. SPIE, 2004. http://dx.doi.org/10.1117/12.509064.
Texto completodel-Castillo-Negrete, D., J. M. Finn y D. C. Barnes. "The modified drift-Poisson model: Analogies with geophysical flows and Rossby waves". En Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302113.
Texto completoKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO y P. K. SHUKLA. "ZONAL FLOW GENERATION BY MAGNETIZED ROSSBY WAVES IN THE IONOPHERIC E-LAYER". En Proceedings of the 12th Regional Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770523_0026.
Texto completoMorey, Steve, Dmitry Dukhovskoy y Cortis K. Cooper. "SS: Metocean: Measurements and Modeling Measurements of Topographic Rossby Waves along the Sigsbee Escarpment". En Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20694-ms.
Texto completoDai, Yuqiang, Fengxia Liu, Jintao Wu, Wei Wei, Dapeng Hu y Xuewu Liu. "Influence of Skewing of Contact Face on Performance of Wave Rotor Refrigerators and Superchargers". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63449.
Texto completoInformes sobre el tema "Rossby waves"
Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2008. http://dx.doi.org/10.21236/ada532809.
Texto completoPeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2007. http://dx.doi.org/10.21236/ada541436.
Texto completoPeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2006. http://dx.doi.org/10.21236/ada631046.
Texto completoMontgomery, Michael T. y Lloyd J. Shapiro. Vortex Rossby Waves and Hurricane Evolution in the Presence of Convection and Potential Vorticity and Hurricane Motion. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1997. http://dx.doi.org/10.21236/ada628370.
Texto completo