Literatura académica sobre el tema "Rolling body problem"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Rolling body problem".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Rolling body problem"
Alouges, François, Yacine Chitour y Ruixing Long. "A Motion-Planning Algorithm for the Rolling-Body Problem". IEEE Transactions on Robotics 26, n.º 5 (octubre de 2010): 827–36. http://dx.doi.org/10.1109/tro.2010.2053733.
Texto completoChitour, Y., A. Marigo y B. Piccoli. "Quantization of the rolling-body problem with applications to motion planning". Systems & Control Letters 54, n.º 10 (octubre de 2005): 999–1013. http://dx.doi.org/10.1016/j.sysconle.2005.02.012.
Texto completoMiftakhova, Almira, Yang-Yuan Chen y Jeng-Haur Horng. "Effect of rolling on the friction coefficient in three-body contact". Advances in Mechanical Engineering 11, n.º 8 (agosto de 2019): 168781401987230. http://dx.doi.org/10.1177/1687814019872303.
Texto completoKennedy, Kevin F. "An Approximate Three-Dimensional Metal Flow Analysis for Shape Rolling". Journal of Engineering for Industry 110, n.º 3 (1 de agosto de 1988): 223–31. http://dx.doi.org/10.1115/1.3187873.
Texto completoKennedy, K. F. "A Method for Analyzing Spread, Elongation and Bulge in Flat Rolling". Journal of Engineering for Industry 109, n.º 3 (1 de agosto de 1987): 248–56. http://dx.doi.org/10.1115/1.3187126.
Texto completoMoghadasi, S. Reza. "Rolling of a body on a plane or a sphere: a geometric point of view". Bulletin of the Australian Mathematical Society 70, n.º 2 (octubre de 2004): 245–56. http://dx.doi.org/10.1017/s0004972700034468.
Texto completoChepchurov, Mihail, Alexander Sumskoy, Julia Zhigulina y Denis Podpryatov. "Distortion identification of the cylindrical part form of technological units". Automation and modeling in design and management 2022, n.º 4 (21 de diciembre de 2022): 29–36. http://dx.doi.org/10.30987/2658-6436-2022-4-29-36.
Texto completoSönmez, Murat. "A Study on the Combined Effect of Axle Friction and Rolling Resistance". International Journal of Mechanical Engineering Education 31, n.º 2 (abril de 2003): 101–7. http://dx.doi.org/10.7227/ijmee.31.2.2.
Texto completoSpector, A. A. y R. C. Batra. "Rolling/Sliding of a Vibrating Elastic Body on an Elastic Substrate". Journal of Tribology 118, n.º 1 (1 de enero de 1996): 147–52. http://dx.doi.org/10.1115/1.2837070.
Texto completoSpector, A. y R. C. Batra. "On the Motion of an Elastic Body Rolling/Sliding on an Elastic Substrate". Journal of Tribology 117, n.º 2 (1 de abril de 1995): 308–14. http://dx.doi.org/10.1115/1.2831248.
Texto completoTesis sobre el tema "Rolling body problem"
Manríquez, Peñafiel Ronald. "Local approximation by linear systems and Almost-Riemannian Structures on Lie groups and Continuation method in rolling problem with obstacles". Electronic Thesis or Diss., université Paris-Saclay, 2022. https://theses.hal.science/tel-03716186.
Texto completoThe aim of this thesis is to study two topics in sub-Riemannian geometry. On the one hand, the local approximation of an almost-Riemannian structure at singular points, and on the other hand, the kinematic system of a 2-dimensional manifold rolling (without twisting or slipping) on the Euclidean plane with forbidden regions. A n-dimensional almost-Riemannian structure can be defined locally by n vector fields satisfying the Lie algebra rank condition, playing the role of an orthonormal frame. The set of points where these vector fields are colinear is called the singular set (Z). At tangency points, i.e., points where the linear span of the vector fields is equal to the tangent space of Z, the nilpotent approximation can be replaced by the solvable one. In this thesis, under generic conditions, we state the order of approximation of the original distance by d ̃ (the distance induced by the solvable approximation), and we prove that d ̃ is closer than the distance induced by the nilpotent approximation to the original distance. Regarding the structure of the approximating system, the Lie algebra generated by this new family of vector fields is finite-dimensional and solvable (in the generic case). Moreover, the solvable approximation is equivalent to a linear ARS on a homogeneous space or a Lie group. On the other hand, nonholonomic systems have attracted the attention of many authors from different disciplines for their varied applications, mainly in robotics. The rolling-body problem (without slipping or spinning) of a 2-dimensional Riemannian manifold on another one can be written as a nonholonomic system. Many methods, algorithms, and techniques have been developed to solve it. A numerical implementation of the Continuation Method to solve the problem in which a convex surface rolls on the Euclidean plane with forbidden regions (or obstacles) without slipping or spinning is performed. Several examples are illustrated
Capítulos de libros sobre el tema "Rolling body problem"
Hill, R. "Two-Dimensional Problems Of Steady Motion". En The Mathematical Theory Of Plasticity, 161–212. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198503675.003.0007.
Texto completoKobayashi, Shiro, Soo-Ik Oh y Taylan Altan. "Preform Design in Metal Forming". En Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0018.
Texto completoChambers, Marcie L., John K. Hewitt, Stephanie Schmitz, Robin P. Corley y David W. Fulker. "Height, Weight, and Body Mass Index". En Infancy to Early Childhood, 292–306. Oxford University PressNew York, NY, 2001. http://dx.doi.org/10.1093/oso/9780195130126.003.0022.
Texto completoActas de conferencias sobre el tema "Rolling body problem"
Alouges, Francois, Yacine Chitour y Ruixing Long. "A motion planning algorithm for the rolling-body problem". En 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC 2009). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400393.
Texto completoKurasov, Dmitriy. "KINEMATIC POSSIBILITIES OF "GEARED" CLOSED ROLLING BODY SYSTEMS". En PROBLEMS OF APPLIED MECHANICS. Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fd1ed039e5272.57017138.
Texto completoSari, O. Taylan, George G. Adams y Sinan Mu¨ftu¨. "The Sliding and Rolling of a Cylinder at the Nano-Scale". En ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64347.
Texto completoRajendran, Suresh y C. Guedes Soares. "Numerical Investigation of Parametric Rolling of a Container Ship in Regular and Irregular Waves". En ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62490.
Texto completoNguyen, Van Duong, Gim Song Soh, Shaohui Foong y Kristin Wood. "Localization of a Miniature Spherical Rolling Robot Using IMU, Odometry and UWB". En ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85548.
Texto completoCakdi, Sabri, Scott Cummings y John Punwani. "Heavy Haul Coal Car Wheel Load Environment: Rolling Contact Fatigue Investigation". En 2015 Joint Rail Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/jrc2015-5640.
Texto completoTrinkle, J. C. "Formulation of Multibody Dynamics as Complementarity Problems". En ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48342.
Texto completoCheung, L. W., K. C. Lau, Flora F. Leung, Donald N. F. Ip, Henry G. H. Chow, Philip W. Y. Chiu y Y. Yam. "Distal Joint Rotation Mechanism for Endoscopic Robot Manipulation". En The Hamlyn Symposium on Medical Robotics: "MedTech Reimagined". The Hamlyn Centre, Imperial College London London, UK, 2022. http://dx.doi.org/10.31256/hsmr2022.74.
Texto completoVantsevich, V. V., A. D. Zakrevskij y S. V. Kharytonchyk. "Heavy-Duty Truck: Inverse Dynamics and Performance Control". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42659.
Texto completoMurakami, Hidenori y Takeyuki Ono. "A Variational Derivation of Equations of Motion With Contact Constraints Using SE(3)". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87126.
Texto completo