Literatura académica sobre el tema "Robust Object Model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Robust Object Model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Robust Object Model"
KIM, SUNGHO, GIJEONG JANG, WANG-HEON LEE y IN SO KWEON. "COMBINED MODEL-BASED 3D OBJECT RECOGNITION". International Journal of Pattern Recognition and Artificial Intelligence 19, n.º 07 (noviembre de 2005): 839–52. http://dx.doi.org/10.1142/s0218001405004368.
Texto completoDong, Qiujie, Xuedong He, Haiyan Ge, Qin Liu, Aifu Han y Shengzong Zhou. "Improving model drift for robust object tracking". Multimedia Tools and Applications 79, n.º 35-36 (7 de julio de 2020): 25801–15. http://dx.doi.org/10.1007/s11042-020-09032-z.
Texto completoWang, Yong, Xian Wei, Hao Shen, Xuan Tang y Hui Yu. "Adaptive model updating for robust object tracking". Signal Processing: Image Communication 80 (febrero de 2020): 115656. http://dx.doi.org/10.1016/j.image.2019.115656.
Texto completoLee, Hyungtak, Seongju Kang y Kwangsue Chung. "Robust Data Augmentation Generative Adversarial Network for Object Detection". Sensors 23, n.º 1 (23 de diciembre de 2022): 157. http://dx.doi.org/10.3390/s23010157.
Texto completoABDELLAOUI, Mehrez y Ali DOUIK. "Robust Object Tracker in Video via Discriminative Model". Studies in Informatics and Control 28, n.º 3 (9 de octubre de 2019): 337–46. http://dx.doi.org/10.24846/v28i3y201910.
Texto completoMedley, Daniela O., Carlos Santiago y Jacinto C. Nascimento. "Deep Active Shape Model for Robust Object Fitting". IEEE Transactions on Image Processing 29 (2020): 2380–94. http://dx.doi.org/10.1109/tip.2019.2948728.
Texto completoWei Zhong, Huchuan Lu y Ming-Hsuan Yang. "Robust Object Tracking via Sparse Collaborative Appearance Model". IEEE Transactions on Image Processing 23, n.º 5 (mayo de 2014): 2356–68. http://dx.doi.org/10.1109/tip.2014.2313227.
Texto completoNai, Ke, Zhiyong Li, Guiji Li y Shanquan Wang. "Robust Object Tracking via Local Sparse Appearance Model". IEEE Transactions on Image Processing 27, n.º 10 (octubre de 2018): 4958–70. http://dx.doi.org/10.1109/tip.2018.2848465.
Texto completoWang, Chong y Kai-Qi Huang. "VFM: Visual Feedback Model for Robust Object Recognition". Journal of Computer Science and Technology 30, n.º 2 (marzo de 2015): 325–39. http://dx.doi.org/10.1007/s11390-015-1526-1.
Texto completoVajda, Peter, Ivan Ivanov, Lutz Goldmann, Jong-Seok Lee y Touradj Ebrahimi. "Robust Duplicate Detection of 2D and 3D Objects". International Journal of Multimedia Data Engineering and Management 1, n.º 3 (julio de 2010): 19–40. http://dx.doi.org/10.4018/jmdem.2010070102.
Texto completoTesis sobre el tema "Robust Object Model"
Bazzi, Louay Mohamad Jamil 1974. "Robust algorithms for model-based object recognition and localization". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9440.
Texto completoIncludes bibliographical references (p. 86-87).
We consider the problem of model-based object recognition and localization in the presence of noise, spurious features, and occlusion. We address the case where the model is allowed to be transformed by elements in a given space of allowable transformations. Known algorithms for the problem either treat noise very accurately in an unacceptable worst case running time, or may have unreliable output when noise is allowed. We introduce the idea of tolerance which measures the robustness of a recognition and localization method when noise is allowed. We present a collection of algorithms for the problem, each achieving a different degree of tolerance. The main result is a localization algorithm that achieves any desired tolerance in a relatively low order worst case asymptotic running time. The time constant of the algorithm depends on the ratio of the noise bound over the given tolerance bound. The solution we provide is general enough to handle different cases of allowable transformations, such as planar affine transformations, and scaled rigid motions in arbitrary dimensions.
by Louay Mohamad Jamil Bazzi.
S.M.
Bax, Ingo. "Hierarchical feed forward models for robust object recognition". [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984822666.
Texto completoSchaich, Rainer Manuel. "Robust model predictive control". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:94e75a62-a801-47e1-8cb8-668e8309d477.
Texto completoCheng, Qifeng. "Robust & stochastic model predictive control". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:89da4934-9de7-4142-958e-513065189518.
Texto completoGastebois, Jérémy. "Contribution à la commande temps réel des robots marcheurs. Application aux stratégies d'évitement des chutes". Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2315/document.
Texto completoBig walking robots are complex multi-joints mechanical systems which crystallize the human will to confer their capabilities on artefacts, one of them being the bipedal locomotion and more especially the balance keeping against external disturbances. This thesis proposes a balance stabilizer under operating conditions displayed on the locomotor system BIP 2000.This anthropomorphic robot has got fifteen electrically actuated degree of freedom and an Industrial controller. A new software has been developed with an object-oriented programming approach in order to propose the modularity required by the emulated and natural human symmetry. This consideration leads to the development of a mathematical tool allowing the computation of every modelling of a serial robot which is the sum of multiple sub robots with already known modelling. The implemented software also enables the robot to run offline generated dynamic walking trajectories and to test the balance stabilizer.We explore in this thesis the feasibility of controlling the center of gravity of a multibody robotic system with electrostatic fields acting on its virtual counterpart in order to guarantee its balance. Experimental results confirm the potential of the proposed approach
Reynaga, Barba Valeria. "Detecting Changes During the Manipulation of an Object Jointly Held by Humans and RobotsDetektera skillnader under manipulationen av ett objekt som gemensamt hålls av människor och robotar". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174027.
Texto completoMunoz, Carpintero Diego Alejandro. "Strategies in robust and stochastic model predictive control". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2f6bce71-f91f-4d5a-998f-295eff5b089a.
Texto completoSpoida, Peter. "Robust pricing and hedging beyond one marginal". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:0315824b-52f7-4e44-9ac6-0a688c49762c.
Texto completoLee, Sharen Woon Yee. "Bayesian methods for the construction of robust chronologies". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:49c30401-9442-441f-b6b5-1539817e2c95.
Texto completoFleming, James. "Robust and stochastic MPC of uncertain-parameter systems". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:c19ff07c-0756-45f6-977b-9d54a5214310.
Texto completoLibros sobre el tema "Robust Object Model"
Odincov, Boris. Models and intelligent systems. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1060845.
Texto completoKoslicki, Kathrin. Hylomorphic Relations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198823803.003.0005.
Texto completoFarina, Lara. Get a Grip? The Tactile Object of Handlyng Synne. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802648.003.0007.
Texto completoPetersen, Christina. “The Most Assassinated Woman in the World”. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037689.003.0005.
Texto completoKlein, Julie Thompson. Beyond Interdisciplinarity. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197571149.001.0001.
Texto completoCapítulos de libros sobre el tema "Robust Object Model"
Wang, Liqun, Xuenan Shi, Sunyi Han y Jinchi. "Robust Object Tracking via Improved Mean-Shift Model". En Mobile and Wireless Technologies 2017, 86–93. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5281-1_10.
Texto completoWang, Weijun y Ramakant Nevatia. "Robust Object Tracking Using Constellation Model with Superpixel". En Computer Vision – ACCV 2012, 191–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37431-9_15.
Texto completoJurie, Frederic. "Robust hypothesis verification for model based object recognition using Gaussian error model". En Computer Vision — ACCV'98, 440–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63931-4_247.
Texto completoLiu, Guoqi, Haifeng Li y Chenjing Li. "Robust Edge-Based Model with Sparsity Representation for Object Segmentation". En Neural Information Processing, 445–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70090-8_46.
Texto completoChoi, Seokeon, Junhyun Lee, Yunsung Lee y Alexander Hauptmann. "Robust Long-Term Object Tracking via Improved Discriminative Model Prediction". En Computer Vision – ECCV 2020 Workshops, 602–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-68238-5_40.
Texto completoQiao, Xiaokang, Kaile Su, Zhonglong Zheng, Huawen Liu y Xiaowei He. "Robust Object Tracking Based on Collaborative Model via L2-Norm Minimization". En Communications in Computer and Information Science, 486–500. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3002-4_41.
Texto completoZografos, Vasileios y Bernard F. Buxton. "Affine Invariant, Model-Based Object Recognition Using Robust Metrics and Bayesian Statistics". En Lecture Notes in Computer Science, 407–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11559573_51.
Texto completoPareek, Anshul, Vsudha Arora y Nidhi Arora. "A Robust Surf-Based Online Human Tracking Algorithm Using Adaptive Object Model". En Proceedings of International Conference on Artificial Intelligence and Applications, 543–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4992-2_51.
Texto completoSeo, Byung-Kuk y Harald Wuest. "A Direct Method for Robust Model-Based 3D Object Tracking from a Monocular RGB Image". En Lecture Notes in Computer Science, 551–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49409-8_48.
Texto completoSinger, David, Dorian Rohner y Dominik Henrich. "Robot-Based Creation of Complete 3D Workpiece Models". En Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 289–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_24.
Texto completoActas de conferencias sobre el tema "Robust Object Model"
Zhou, Zhi, Yue Wang y Eam Khwang Teoh. "Robust object tracking using Bi-model". En 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738639.
Texto completoLiu, Qiankun, Qi Chu, Bin Liu y Nenghai Yu. "GSM: Graph Similarity Model for Multi-Object Tracking". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/74.
Texto completo"ROBUST OBJECT TRACKING BY SIMULTANEOUS GENERATION OF AN OBJECT MODEL". En International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0001659803920397.
Texto completoHuang, Po-Hao, Yi-Lin Chen, Chia-Ming Cheng, Yu-An Lu y Shang-Hong Lai. "Robust 3D object model reconstruction from video". En Electronic Imaging 2004, editado por Brian D. Corner, Peng Li y Roy P. Pargas. SPIE, 2004. http://dx.doi.org/10.1117/12.528965.
Texto completoLi, Yi, Xiaohuan Lu, Zhenyu He, Hongpeng Wang y Wen-Sheng Chen. "A Robust Appearance Model for Object Tracking". En 2016 7th International Conference on Cloud Computing and Big Data (CCBD). IEEE, 2016. http://dx.doi.org/10.1109/ccbd.2016.056.
Texto completoWei Zhong, Huchuan Lu y Ming-Hsuan Yang. "Robust object tracking via sparsity-based collaborative model". En 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247882.
Texto completoChang, Yongxin, Zhiyong Xu, Jing Zhang, Chengyu Fu y Chunming Gao. "Robust object recognition based on HMAX model architecture". En Photonics Asia, editado por Tsutomu Shimura, Guangyu Xu, Linmi Tao y Jesse Zheng. SPIE, 2012. http://dx.doi.org/10.1117/12.999350.
Texto completoYao, Zhijun, Bin Feng, Junwei Wang y Wenyu Liu. "Building a Robust Appearance Model for Object Tracking". En 2009 International Conference on Artificial Intelligence and Computational Intelligence. IEEE, 2009. http://dx.doi.org/10.1109/aici.2009.165.
Texto completoHaifeng Chen, I. Shimshoni y P. Meer. "Model based object recognition by robust information fusion". En Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334468.
Texto completoLuo, Wenhan, Xiaoqin Zhang, Yang Liu, Xi Li, Weiming Hu y Wei Li. "Efficient block-division model for robust multiple object tracking". En ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946626.
Texto completoInformes sobre el tema "Robust Object Model"
Christie, Benjamin, Osama Ennasr y Garry Glaspell. ROS integrated object detection for SLAM in unknown, low-visibility environments. Engineer Research and Development Center (U.S.), noviembre de 2021. http://dx.doi.org/10.21079/11681/42385.
Texto completo