Siga este enlace para ver otros tipos de publicaciones sobre el tema: RNA.

Artículos de revistas sobre el tema "RNA"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "RNA".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

OHNO, Hirohisa y Hirohide SAITO. "RNA/RNP Nanotechnology for Biological Applications". Seibutsu Butsuri 56, n.º 1 (2016): 023–26. http://dx.doi.org/10.2142/biophys.56.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

SHIROGUCHI, Katsuyuki. "RNA Sequencing". Seibutsu Butsuri 53, n.º 6 (2013): 290–94. http://dx.doi.org/10.2142/biophys.53.290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shi, Rui-Zhu, Yuan-Qing Pan y Li Xing. "RNA Helicase A Regulates the Replication of RNA Viruses". Viruses 13, n.º 3 (25 de febrero de 2021): 361. http://dx.doi.org/10.3390/v13030361.

Texto completo
Resumen
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Afonin, Kirill A., Mathias Viard, Ioannis Kagiampakis, Christopher L. Case, Marina A. Dobrovolskaia, Jen Hofmann, Ashlee Vrzak et al. "Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles". ACS Nano 9, n.º 1 (18 de diciembre de 2014): 251–59. http://dx.doi.org/10.1021/nn504508s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kim, Hyunjong y Juhee Ryu. "Mechanism of Circular RNAs and Their Potential as Novel Therapeutic Agents in Retinal Vascular Diseases". Yakhak Hoeji 67, n.º 6 (31 de diciembre de 2023): 325–34. http://dx.doi.org/10.17480/psk.2023.67.6.325.

Texto completo
Resumen
Maintaining and preserving visual function became critical in this aging society. The number of patients with retinal vascular disease such as retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy is gradually increasing due to increased life expectancy, advancements in the technology of delivering premature babies, and complications due to eating habits. To treat these retinal vascular diseases, surgical intervention such as laser photocoagulation and anti-vascular endothelial growth factor (VEGF) drugs can be considered. However, these treatment options are accompanied by various complications and adverse effects. Thus, new treatments focusing on the pathogenesis of retinal vascular disease need to be developed. Various evidences suggest that circular RNA is involved in the pathogenesis of retinal disease. In this article, we discuss about currently used treatments of retinal vascular diseases and the emerging role of circular RNAs in the pathogenesis of retinal vascular diseases. Therefore, understanding the mechanism of circular RNA regulating retinal disease and developing therapeutics using these circular RNAs may offer novel treatment options to cure retinal vascular disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rajkowitsch, Lukas, Doris Chen, Sabine Stampfl, Katharina Semrad, Christina Waldsich, Oliver Mayer, Michael F. Jantsch, Robert Konrat, Udo Bläsi y Renée Schroeder. "RNA Chaperones, RNA Annealers and RNA Helicases". RNA Biology 4, n.º 3 (julio de 2007): 118–30. http://dx.doi.org/10.4161/rna.4.3.5445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sengoku, T., O. Nureki y S. Yokoyama. "Structural basis for RNA translocation by RNA helicase". Seibutsu Butsuri 43, supplement (2003): S98. http://dx.doi.org/10.2142/biophys.43.s98_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tang, Lin. "Mapping RNA–RNA interactions". Nature Methods 17, n.º 8 (31 de julio de 2020): 760. http://dx.doi.org/10.1038/s41592-020-0922-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ligoxygakis, P. "RNA that synthesizes RNA". Trends in Genetics 17, n.º 7 (1 de julio de 2001): 380. http://dx.doi.org/10.1016/s0168-9525(01)02391-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ogasawara, Shinzi y Ai Yamada. "RNA Editing with Viral RNA-Dependent RNA Polymerase". ACS Synthetic Biology 11, n.º 1 (3 de enero de 2022): 46–52. http://dx.doi.org/10.1021/acssynbio.1c00332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Ahlquist, P. "RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing". Science 296, n.º 5571 (17 de mayo de 2002): 1270–73. http://dx.doi.org/10.1126/science.1069132.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Arnott, Struther, R. Chandrasekaran, R. P. Millane y H. S. Park. "RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism". Biophysical Journal 49, n.º 1 (enero de 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Yano, A. y K. Harada. "2P142 Inhibition of RNA-protein interaction by RNA-RNA interaction". Seibutsu Butsuri 45, supplement (2005): S155. http://dx.doi.org/10.2142/biophys.45.s155_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Taylor, J. P. "RNA That Gets RAN in Neurodegeneration". Science 339, n.º 6125 (14 de marzo de 2013): 1282–83. http://dx.doi.org/10.1126/science.1236450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Stackebrandt, Erko, Werner Liesack y Dagmar Witt. "Ribosomal RNA and rDNA sequence analyses". Gene 115, n.º 1-2 (junio de 1992): 255–60. http://dx.doi.org/10.1016/0378-1119(92)90567-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Zhang, X., D. Wu, L. Chen, X. Li, J. Yang, D. Fan, T. Dong et al. "RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction". RNA 20, n.º 7 (6 de mayo de 2014): 989–93. http://dx.doi.org/10.1261/rna.044776.114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Alkan, Can, Emre Karakoç, Joseph H. Nadeau, S. Cenk Sahinalp y Kaizhong Zhang. "RNA–RNA Interaction Prediction and Antisense RNA Target Search". Journal of Computational Biology 13, n.º 2 (marzo de 2006): 267–82. http://dx.doi.org/10.1089/cmb.2006.13.267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Newburn, Laura R. y K. Andrew White. "Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses". Viruses 11, n.º 8 (14 de agosto de 2019): 751. http://dx.doi.org/10.3390/v11080751.

Texto completo
Resumen
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Cazenave, C. y O. C. Uhlenbeck. "RNA template-directed RNA synthesis by T7 RNA polymerase." Proceedings of the National Academy of Sciences 91, n.º 15 (19 de julio de 1994): 6972–76. http://dx.doi.org/10.1073/pnas.91.15.6972.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

McGinness, Kathleen E. y Gerald F. Joyce. "RNA-Catalyzed RNA Ligation on an External RNA Template". Chemistry & Biology 9, n.º 3 (marzo de 2002): 297–307. http://dx.doi.org/10.1016/s1074-5521(02)00110-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Predki, Paul F., L. Mike Nayak, Morris B. C. Gottlieb y Lynne Regan. "Dissecting RNA-protein interactions: RNA-RNA recognition by Rop". Cell 80, n.º 1 (enero de 1995): 41–50. http://dx.doi.org/10.1016/0092-8674(95)90449-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Günzl, Arthur, Thomas Bruderer, Gabriele Laufer, Bernd Schimanski, Lan-Chun Tu, Hui-Min Chung, Pei-Tseng Lee y Mary Gwo-Shu Lee. "RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei". Eukaryotic Cell 2, n.º 3 (junio de 2003): 542–51. http://dx.doi.org/10.1128/ec.2.3.542-551.2003.

Texto completo
Resumen
ABSTRACT In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

HONDA, Tomoyuki y Keizo TOMONAGA. "Possible roles of endogenous RNA virus elements in RNA virus infection". Uirusu 66, n.º 1 (2016): 39–46. http://dx.doi.org/10.2222/jsv.66.39.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Xue, Yuanchao. "Architecture of RNA–RNA interactions". Current Opinion in Genetics & Development 72 (febrero de 2022): 138–44. http://dx.doi.org/10.1016/j.gde.2021.11.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Röthlisberger, Pascal, Christian Berk y Jonathan Hall. "RNA Chemistry for RNA Biology". CHIMIA International Journal for Chemistry 73, n.º 5 (29 de mayo de 2019): 368–73. http://dx.doi.org/10.2533/chimia.2019.368.

Texto completo
Resumen
Advances in the chemical synthesis of RNA have opened new possibilities to address current questions in RNA biology. Access to site-specifically modified oligoribonucleotides is often a pre-requisite for RNA chemical-biology projects. Driven by the enormous research efforts for development of oligonucleotide therapeutics, a wide range of chemical modifications have been developed to modulate the intrinsic properties of nucleic acids in order to fit their use as therapeutics or research tools. The RNA synthesis platform, supported by the NCCR RNA & Disease, aims to provide access to a large variety of chemically modified nucleic acids. In this review, we describe some of the recent projects that involved work of the platform and highlight how RNA chemistry supports new discoveries in RNA biology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

GUTHRIE, CHRISTINE. "Catalytic RNA and RNA Splicing". American Zoologist 29, n.º 2 (mayo de 1989): 557–67. http://dx.doi.org/10.1093/icb/29.2.557.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Fu, Xiang-Dong. "RNA helicases regulate RNA condensates". Cell Research 30, n.º 4 (9 de marzo de 2020): 281–82. http://dx.doi.org/10.1038/s41422-020-0296-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Newman, Andy. "RNA enzymes for RNA splicing". Nature 413, n.º 6857 (octubre de 2001): 695–96. http://dx.doi.org/10.1038/35099665.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Abe, Hiroshi. "Nanostructured RNA for RNA Intereference". YAKUGAKU ZASSHI 133, n.º 3 (1 de marzo de 2013): 373–78. http://dx.doi.org/10.1248/yakushi.12-00239-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Khemici, Vanessa y Patrick Linder. "RNA helicases in RNA decay". Biochemical Society Transactions 46, n.º 1 (19 de enero de 2018): 163–72. http://dx.doi.org/10.1042/bst20170052.

Texto completo
Resumen
RNA molecules have the tendency to fold into complex structures or to associate with complementary RNAs that exoribonucleases have difficulties processing or degrading. Therefore, degradosomes in bacteria and organelles as well as exosomes in eukaryotes have teamed-up with RNA helicases. Whereas bacterial degradosomes are associated with RNA helicases from the DEAD-box family, the exosomes and mitochondrial degradosome use the help of Ski2-like and Suv3 RNA helicases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Meyer, Irmtraud M. "Predicting novel RNA–RNA interactions". Current Opinion in Structural Biology 18, n.º 3 (junio de 2008): 387–93. http://dx.doi.org/10.1016/j.sbi.2008.03.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Westhof, Eric, Benoît Masquida y Luc Jaeger. "RNA tectonics: towards RNA design". Folding and Design 1, n.º 4 (agosto de 1996): R78—R88. http://dx.doi.org/10.1016/s1359-0278(96)00037-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Peng, LiNa, YuJiao Li, Lan Zhang y WenQiang Yu. "Moving RNA moves RNA forward". Science China Life Sciences 56, n.º 10 (5 de septiembre de 2013): 914–20. http://dx.doi.org/10.1007/s11427-013-4545-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Li, Thomas J. X. y Christian M. Reidys. "Combinatorics of RNA–RNA interaction". Journal of Mathematical Biology 64, n.º 3 (4 de mayo de 2011): 529–56. http://dx.doi.org/10.1007/s00285-011-0423-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler y I. L. Hofacker. "Thermodynamics of RNA-RNA binding". Bioinformatics 22, n.º 10 (29 de enero de 2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

SCHMIDT, FRANCIS J., BONGRAE CHO y HUGH B. NICHOLAS. "RNA Libraries and RNA Recognitiona". Annals of the New York Academy of Sciences 782, n.º 1 (mayo de 1996): 526–33. http://dx.doi.org/10.1111/j.1749-6632.1996.tb40590.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Menzel, Peter, Stefan E. Seemann y Jan Gorodkin. "RILogo: visualizing RNA–RNA interactions". Bioinformatics 28, n.º 19 (23 de julio de 2012): 2523–26. http://dx.doi.org/10.1093/bioinformatics/bts461.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kok, Chee Choy y Peter C. McMinn. "Picornavirus RNA-dependent RNA polymerase". International Journal of Biochemistry & Cell Biology 41, n.º 3 (marzo de 2009): 498–502. http://dx.doi.org/10.1016/j.biocel.2008.03.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hammond, T. M. y N. P. Keller. "RNA Silencing inAspergillus nidulansIs Independent of RNA-Dependent RNA Polymerases". Genetics 169, n.º 2 (15 de noviembre de 2004): 607–17. http://dx.doi.org/10.1534/genetics.104.035964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Skeparnias, Ilias y Jinwei Zhang. "Cooperativity and Interdependency between RNA Structure and RNA–RNA Interactions". Non-Coding RNA 7, n.º 4 (15 de diciembre de 2021): 81. http://dx.doi.org/10.3390/ncrna7040081.

Texto completo
Resumen
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Snider, Daltry L. y Stacy M. Horner. "RNA modification of an RNA modifier prevents self-RNA sensing". PLOS Biology 19, n.º 7 (30 de julio de 2021): e3001342. http://dx.doi.org/10.1371/journal.pbio.3001342.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Koh, Hye Ran, Li Xing, Lawrence Kleiman y Sua Myong. "Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing". Nucleic Acids Research 42, n.º 13 (9 de junio de 2014): 8556–64. http://dx.doi.org/10.1093/nar/gku523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Shioda, Norifumi. "RNA toxicity and RAN translation in repeat expansion disorders". Folia Pharmacologica Japonica 150, n.º 3 (2017): 165. http://dx.doi.org/10.1254/fpj.150.165.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

KIKUCHI, Yo. "Current RNA World". Journal of the Japan Veterinary Medical Association 52, n.º 1 (1999): 1–5. http://dx.doi.org/10.12935/jvma1951.52.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

付, 洪. "Multifunction of LncRNA RMRP RNA". Biophysics 08, n.º 02 (2020): 19–27. http://dx.doi.org/10.12677/biphy.2020.82002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Turner, Richard. "RNA". Nature 418, n.º 6894 (julio de 2002): 213. http://dx.doi.org/10.1038/418213a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Darnell, James E. "RNA". Scientific American 253, n.º 4 (octubre de 1985): 68–78. http://dx.doi.org/10.1038/scientificamerican1085-68.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Karbstein, Katrin y Jennifer A. Doudna. "RNA". Chemistry & Biology 11, n.º 2 (febrero de 2004): 149–51. http://dx.doi.org/10.1016/j.chembiol.2004.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Nybo, Kristie. "RNA Methods: RNA Extraction from Plasma". BioTechniques 47, n.º 4 (octubre de 2009): 821–23. http://dx.doi.org/10.2144/000113235.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Rabhi, Makhlouf, Roman Tuma y Marc Boudvillain. "RNA remodeling by hexameric RNA helicases". RNA Biology 7, n.º 6 (noviembre de 2010): 655–66. http://dx.doi.org/10.4161/rna.7.6.13570.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía