Siga este enlace para ver otros tipos de publicaciones sobre el tema: Riordan arrays.

Artículos de revistas sobre el tema "Riordan arrays"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Riordan arrays".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Barry, Paul. "Embedding Structures Associated with Riordan Arrays and Moment Matrices". International Journal of Combinatorics 2014 (17 de marzo de 2014): 1–7. http://dx.doi.org/10.1155/2014/301394.

Texto completo
Resumen
Every ordinary Riordan array contains two naturally embedded Riordan arrays. We explore this phenomenon, and we compare it to the situation for certain moment matrices of families of orthogonal polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Weiping y Tianming Wang. "Generalized Riordan arrays". Discrete Mathematics 308, n.º 24 (diciembre de 2008): 6466–500. http://dx.doi.org/10.1016/j.disc.2007.12.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Luzón, Ana, Donatella Merlini, Manuel A. Morón y Renzo Sprugnoli. "Complementary Riordan arrays". Discrete Applied Mathematics 172 (julio de 2014): 75–87. http://dx.doi.org/10.1016/j.dam.2014.03.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Barry, Paul. "On the Connection Coefficients of the Chebyshev-Boubaker Polynomials". Scientific World Journal 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/657806.

Texto completo
Resumen
The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Merlini, Donatella, Douglas G. Rogers, Renzo Sprugnoli y M. Cecilia Verri. "On Some Alternative Characterizations of Riordan Arrays". Canadian Journal of Mathematics 49, n.º 2 (1 de abril de 1997): 301–20. http://dx.doi.org/10.4153/cjm-1997-015-x.

Texto completo
Resumen
AbstractWe give several new characterizations of Riordan Arrays, the most important of which is: if {dn,k}n,k∈N is a lower triangular arraywhose generic element dn,k linearly depends on the elements in a well-defined though large area of the array, then {dn,k}n,k∈N is Riordan. We also provide some applications of these characterizations to the lattice path theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lee, GwangYeon y Mustafa Asci. "Some Properties of the(p,q)-Fibonacci and(p,q)-Lucas Polynomials". Journal of Applied Mathematics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/264842.

Texto completo
Resumen
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Luzón, Ana, Donatella Merlini, Manuel A. Morón y Renzo Sprugnoli. "Identities induced by Riordan arrays". Linear Algebra and its Applications 436, n.º 3 (febrero de 2012): 631–47. http://dx.doi.org/10.1016/j.laa.2011.08.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

He, Tian-Xiao. "Matrix characterizations of Riordan arrays". Linear Algebra and its Applications 465 (enero de 2015): 15–42. http://dx.doi.org/10.1016/j.laa.2014.09.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Krelifa, Ali y Ebtissem Zerouki. "Riordan arrays and d-orthogonality". Linear Algebra and its Applications 515 (febrero de 2017): 331–53. http://dx.doi.org/10.1016/j.laa.2016.11.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sprugnoli, Renzo. "Riordan arrays and combinatorial sums". Discrete Mathematics 132, n.º 1-3 (septiembre de 1994): 267–90. http://dx.doi.org/10.1016/0012-365x(92)00570-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Deutsch, Emeric, Luca Ferrari y Simone Rinaldi. "Production Matrices and Riordan Arrays". Annals of Combinatorics 13, n.º 1 (8 de mayo de 2009): 65–85. http://dx.doi.org/10.1007/s00026-009-0013-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

He, Tian-Xiao y Renzo Sprugnoli. "Sequence characterization of Riordan arrays". Discrete Mathematics 309, n.º 12 (junio de 2009): 3962–74. http://dx.doi.org/10.1016/j.disc.2008.11.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chen, Xi, Huyile Liang y Yi Wang. "Total positivity of Riordan arrays". European Journal of Combinatorics 46 (mayo de 2015): 68–74. http://dx.doi.org/10.1016/j.ejc.2014.11.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Sprugnoli, Renzo. "Combinatorial sums through Riordan arrays". Journal of Geometry 101, n.º 1-2 (agosto de 2011): 195–210. http://dx.doi.org/10.1007/s00022-011-0090-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Agapito, José, Ângela Mestre, Pasquale Petrullo y Maria M. Torres. "A symbolic treatment of Riordan arrays". Linear Algebra and its Applications 439, n.º 7 (octubre de 2013): 1700–1715. http://dx.doi.org/10.1016/j.laa.2013.05.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Mu, Lili, Jianxi Mao y Yi Wang. "Row polynomial matrices of Riordan arrays". Linear Algebra and its Applications 522 (junio de 2017): 1–14. http://dx.doi.org/10.1016/j.laa.2017.02.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wang, Weiping y Chenlu Zhang. "Riordan arrays and related polynomial sequences". Linear Algebra and its Applications 580 (noviembre de 2019): 262–91. http://dx.doi.org/10.1016/j.laa.2019.06.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Cheon, Gi-Sang y M. E. A. El-Mikkawy. "Generalized harmonic numbers with Riordan arrays". Journal of Number Theory 128, n.º 2 (febrero de 2008): 413–25. http://dx.doi.org/10.1016/j.jnt.2007.08.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Wang, Weiping. "Riordan arrays and harmonic number identities". Computers & Mathematics with Applications 60, n.º 5 (septiembre de 2010): 1494–509. http://dx.doi.org/10.1016/j.camwa.2010.06.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Merlini, Donatella y M. Cecilia Verri. "Generating trees and proper Riordan Arrays". Discrete Mathematics 218, n.º 1-3 (mayo de 2000): 167–83. http://dx.doi.org/10.1016/s0012-365x(99)00343-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Burlachenko, E. V. "Riordan arrays and generalized Lagrange series". Mathematical Notes 100, n.º 3-4 (septiembre de 2016): 531–39. http://dx.doi.org/10.1134/s0001434616090248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Merlini, Donatella, Renzo Sprugnoli y Maria Cecilia Verri. "Combinatorial sums and implicit Riordan arrays". Discrete Mathematics 309, n.º 2 (enero de 2009): 475–86. http://dx.doi.org/10.1016/j.disc.2007.12.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Merlini, Donatella, Renzo Sprugnoli y Maria Cecilia Verri. "Combinatorial inversions and implicit Riordan arrays". Electronic Notes in Discrete Mathematics 26 (septiembre de 2006): 103–10. http://dx.doi.org/10.1016/j.endm.2006.08.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Xi, Gao Wen, Lan Long, Xue Quan Tian y Zhao Hui Chen. "Inverse Generalized Harmonic Numbers with Riordan Arrays". Advanced Materials Research 842 (noviembre de 2013): 750–53. http://dx.doi.org/10.4028/www.scientific.net/amr.842.750.

Texto completo
Resumen
In this paper, By observing that the infinite triangle obtained from some generalized harmonic numbers follows a Riordan array, we obtain connections between the Stirling numbers of both kinds and other inverse generalized harmonic numbers. Further, we proved some combinatorial sums and inverse generalized harmonic number identities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Yang, Lin y Sheng-Liang Yang. "Riordan arrays, Łukasiewicz paths and Narayana polynomials". Linear Algebra and its Applications 622 (agosto de 2021): 1–18. http://dx.doi.org/10.1016/j.laa.2021.03.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ma, Qianqian y Weiping Wang. "Riordan arrays and r-Stirling number identities". Discrete Mathematics 346, n.º 1 (enero de 2023): 113211. http://dx.doi.org/10.1016/j.disc.2022.113211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Baccherini, D., D. Merlini y R. Sprugnoli. "Level generating trees and proper Riordan arrays". Applicable Analysis and Discrete Mathematics 2, n.º 1 (2008): 69–91. http://dx.doi.org/10.2298/aadm0801069b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Zhu, Bao-Xuan. "Total Positivity from the Exponential Riordan Arrays". SIAM Journal on Discrete Mathematics 35, n.º 4 (enero de 2021): 2971–3003. http://dx.doi.org/10.1137/20m1379952.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Cheon, Gi-Sang y Sung-Tae Jin. "The group of multi-dimensional Riordan arrays". Linear Algebra and its Applications 524 (julio de 2017): 263–77. http://dx.doi.org/10.1016/j.laa.2017.03.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sprugnoli, Renzo. "Riordan arrays and the Abel-Gould identity". Discrete Mathematics 142, n.º 1-3 (julio de 1995): 213–33. http://dx.doi.org/10.1016/0012-365x(93)e0220-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Merlini, Donatella y Renzo Sprugnoli. "Arithmetic into geometric progressions through Riordan arrays". Discrete Mathematics 340, n.º 2 (febrero de 2017): 160–74. http://dx.doi.org/10.1016/j.disc.2016.08.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Yang, Sheng-Liang, Yan-Xue Xu y Tian-Xiao He. "$(m,r)$-central Riordan arrays and their applications". Czechoslovak Mathematical Journal 67, n.º 4 (24 de octubre de 2017): 919–36. http://dx.doi.org/10.21136/cmj.2017.0165-16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Barry, Paul. "Riordan arrays, generalized Narayana triangles, and series reversion". Linear Algebra and its Applications 491 (febrero de 2016): 343–85. http://dx.doi.org/10.1016/j.laa.2015.10.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

He, Tian-Xiao y Louis W. Shapiro. "Row sums and alternating sums of Riordan arrays". Linear Algebra and its Applications 507 (octubre de 2016): 77–95. http://dx.doi.org/10.1016/j.laa.2016.05.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chen, Xi y Yi Wang. "Notes on the total positivity of Riordan arrays". Linear Algebra and its Applications 569 (mayo de 2019): 156–61. http://dx.doi.org/10.1016/j.laa.2019.01.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Słowik, R. "Some (counter)examples on totally positive Riordan arrays". Linear Algebra and its Applications 594 (junio de 2020): 117–23. http://dx.doi.org/10.1016/j.laa.2020.02.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zhao, Xiqiang, Shuangshuang Ding y Tingming Wang. "Some summation rules related to the Riordan arrays". Discrete Mathematics 281, n.º 1-3 (abril de 2004): 295–307. http://dx.doi.org/10.1016/j.disc.2003.08.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Xi, Gao Wen y Zheng Ping Zhang. "Summations of Inverse Generalized Harmonic Numbers with Riordan Arrays". Applied Mechanics and Materials 687-691 (noviembre de 2014): 1394–98. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.1394.

Texto completo
Resumen
By observing that the infinite triangle obtained from some generalized harmonic numbers follows a Riordan array, we using connections between the Stirling numbers of both kinds and other inverse generalized harmonic numbers. we proved some combinatorial sums and inverse generalized harmonic number identities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Petrullo, P. "Palindromic Riordan arrays, classical orthogonal polynomials and Catalan triangles". Linear Algebra and its Applications 618 (junio de 2021): 158–82. http://dx.doi.org/10.1016/j.laa.2021.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

He, Tian-Xiao. "Sequence characterizations of double Riordan arrays and their compressions". Linear Algebra and its Applications 549 (julio de 2018): 176–202. http://dx.doi.org/10.1016/j.laa.2018.03.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cheon, Gi-Sang y Minho Song. "A new aspect of Riordan arrays via Krylov matrices". Linear Algebra and its Applications 554 (octubre de 2018): 329–41. http://dx.doi.org/10.1016/j.laa.2018.05.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Baccherini, D., D. Merlini y R. Sprugnoli. "Binary words excluding a pattern and proper Riordan arrays". Discrete Mathematics 307, n.º 9-10 (mayo de 2007): 1021–37. http://dx.doi.org/10.1016/j.disc.2006.07.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Yang, Sheng-liang y Sai-nan Zheng. "A Determinant Expression for the Generalized Bessel Polynomials". Journal of Applied Mathematics 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/242815.

Texto completo
Resumen
Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Słowik, R. "More about involutions in the group of almost-Riordan arrays". Linear Algebra and its Applications 624 (septiembre de 2021): 247–58. http://dx.doi.org/10.1016/j.laa.2021.04.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Mao, Jianxi, Lili Mu y Yi Wang. "Yet another criterion for the total positivity of Riordan arrays". Linear Algebra and its Applications 634 (febrero de 2022): 106–11. http://dx.doi.org/10.1016/j.laa.2021.11.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Cheon, Gi-Sang, Hana Kim y Louis W. Shapiro. "Combinatorics of Riordan arrays with identical A and Z sequences". Discrete Mathematics 312, n.º 12-13 (julio de 2012): 2040–49. http://dx.doi.org/10.1016/j.disc.2012.03.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ju, Hyeong-Kwan, Hyun-Jeong Lee y Soo-Jeong Seo. "INTEGRAL POLYNOMIAL SEQUENCES RELATED WITH KRAWTCHOUK MATRICES AND ASSOCIATED RIORDAN ARRAYS". Honam Mathematical Journal 34, n.º 3 (25 de septiembre de 2012): 297–310. http://dx.doi.org/10.5831/hmj.2012.34.3.297.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

He, Tian-Xiao. "Riordan arrays associated with Laurent series and generalized Sheffer-type groups". Linear Algebra and its Applications 435, n.º 6 (septiembre de 2011): 1241–56. http://dx.doi.org/10.1016/j.laa.2011.03.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Yang, Sheng-Liang, Yan-Ni Dong, Tian-Xiao He y Yan-Xue Xu. "A unified approach for the Catalan matrices by using Riordan arrays". Linear Algebra and its Applications 558 (diciembre de 2018): 25–43. http://dx.doi.org/10.1016/j.laa.2018.07.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Cheon, Gi-Sang, Bong Dae Choi y Sung-Tae Jin. "An application of Riordan arrays to the transient analysis of queues". Applied Mathematics and Computation 237 (junio de 2014): 659–71. http://dx.doi.org/10.1016/j.amc.2014.03.142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía