Literatura académica sobre el tema "Riordan arrays"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Riordan arrays".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Riordan arrays"

1

Barry, Paul. "Embedding Structures Associated with Riordan Arrays and Moment Matrices". International Journal of Combinatorics 2014 (17 de marzo de 2014): 1–7. http://dx.doi.org/10.1155/2014/301394.

Texto completo
Resumen
Every ordinary Riordan array contains two naturally embedded Riordan arrays. We explore this phenomenon, and we compare it to the situation for certain moment matrices of families of orthogonal polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Weiping y Tianming Wang. "Generalized Riordan arrays". Discrete Mathematics 308, n.º 24 (diciembre de 2008): 6466–500. http://dx.doi.org/10.1016/j.disc.2007.12.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Luzón, Ana, Donatella Merlini, Manuel A. Morón y Renzo Sprugnoli. "Complementary Riordan arrays". Discrete Applied Mathematics 172 (julio de 2014): 75–87. http://dx.doi.org/10.1016/j.dam.2014.03.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Barry, Paul. "On the Connection Coefficients of the Chebyshev-Boubaker Polynomials". Scientific World Journal 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/657806.

Texto completo
Resumen
The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Merlini, Donatella, Douglas G. Rogers, Renzo Sprugnoli y M. Cecilia Verri. "On Some Alternative Characterizations of Riordan Arrays". Canadian Journal of Mathematics 49, n.º 2 (1 de abril de 1997): 301–20. http://dx.doi.org/10.4153/cjm-1997-015-x.

Texto completo
Resumen
AbstractWe give several new characterizations of Riordan Arrays, the most important of which is: if {dn,k}n,k∈N is a lower triangular arraywhose generic element dn,k linearly depends on the elements in a well-defined though large area of the array, then {dn,k}n,k∈N is Riordan. We also provide some applications of these characterizations to the lattice path theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lee, GwangYeon y Mustafa Asci. "Some Properties of the(p,q)-Fibonacci and(p,q)-Lucas Polynomials". Journal of Applied Mathematics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/264842.

Texto completo
Resumen
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Luzón, Ana, Donatella Merlini, Manuel A. Morón y Renzo Sprugnoli. "Identities induced by Riordan arrays". Linear Algebra and its Applications 436, n.º 3 (febrero de 2012): 631–47. http://dx.doi.org/10.1016/j.laa.2011.08.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

He, Tian-Xiao. "Matrix characterizations of Riordan arrays". Linear Algebra and its Applications 465 (enero de 2015): 15–42. http://dx.doi.org/10.1016/j.laa.2014.09.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Krelifa, Ali y Ebtissem Zerouki. "Riordan arrays and d-orthogonality". Linear Algebra and its Applications 515 (febrero de 2017): 331–53. http://dx.doi.org/10.1016/j.laa.2016.11.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sprugnoli, Renzo. "Riordan arrays and combinatorial sums". Discrete Mathematics 132, n.º 1-3 (septiembre de 1994): 267–90. http://dx.doi.org/10.1016/0012-365x(92)00570-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Riordan arrays"

1

NOCENTINI, MASSIMO. "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation". Doctoral thesis, 2019. http://hdl.handle.net/2158/1217082.

Texto completo
Resumen
The subject of the thesis concerns the study of infinite sequences, in one or two dimensions, supporting the theoretical aspects with systems for symbolic and logic computation. In particular, in the thesis some sequences related to Riordan arrays are examined from both an algebraic and combinatorial points of view and also by using approaches usually applied in numerical analysis. Another part concerns sequences that enumerate particular combinatorial objects, such as trees, polyominoes, and lattice paths, generated by symbolic and certified computations; moreover, tiling problems and backtracking techniques are studied in depth and enumeration of recursive structures are also given. We propose a preliminary suite of tools to interact with the Online Encyclopedia of Integer Sequences, providing a crawling facility to download sequences recursively according to their cross references, pretty-printing them and, finally, drawing graphs representing their connections. In the context of automatic proof derivation, an extension to an automatic theorem prover is proposed to support the relational programming paradigm. This allows us to encode facts about combinatorial objects and to enumerate the corresponding languages by producing certified theorems at the same time. As a concrete illustration, we provide many chunks of code written using functional programming languages; our focus is to support theoretical derivations using sound, clear and elegant implementations to check their validity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Noble, Rob. "Zeros and Asymptotics of Holonomic Sequences". 2011. http://hdl.handle.net/10222/13298.

Texto completo
Resumen
In this thesis we study the zeros and asymptotics of sequences that satisfy linear recurrence relations with generally nonconstant coefficients. By the theorem of Skolem-Mahler-Lech, the set of zero terms of a sequence that satisfies a linear recurrence relation with constant coefficients taken from a field of characteristic zero is comprised of the union of finitely many arithmetic progressions together with a finite exceptional set. Further, in the nondegenerate case, we can eliminate the possibility of arithmetic progressions and conclude that there are only finitely many zero terms. For generally nonconstant coefficients, there are generalizations of this theorem due to Bézivin and to Methfessel that imply, under fairly general conditions, that we obtain a finite union of arithmetic progressions together with an exceptional set of density zero. Further, a condition is given under which one can exclude the possibility of arithmetic progressions and obtain a set of zero terms of density zero. In this thesis, it is shown that this condition reduces to the nondegeneracy condition in the case of constant coefficients. This allows for a consistent definition of nondegeneracy valid for generally nonconstant coefficients and a unified result is obtained. The asymptotic theory of sequences that satisfy linear recurrence relations with generally nonconstant coefficients begins with the basic theorems of Poincaré and Perron. There are some generalizations of these theorems that hold in greater generality, but if we restrict the coefficient sequences of our linear recurrences to be polynomials in the index, we obtain full asymptotic expansions of a predictable form for the solution sequences. These expansions can be obtained by applying a transfer method of Flajolet and Sedgewick or, in some cases, by applying a bivariate method of Pemantle and Wilson. In this thesis, these methods are applied to a family of binomial sums and full asymptotic expansions are obtained. The leading terms of the expansions are obtained explicitly in all cases, while in some cases a field containing the asymptotic coefficients is obtained and some divisibility properties for the asymptotic coefficients are obtained using a generalization of a method of Stoll and Haible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MERLINI, DONATELLA. "I Riordan Array nell'Analisi degli Algoritmi". Doctoral thesis, 1996. http://hdl.handle.net/2158/779171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Riordan arrays"

1

Riordan arrays : a primer - 1. edicion. Logic Press, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Riordan arrays"

1

Shapiro, Louis, Renzo Sprugnoli, Paul Barry, Gi-Sang Cheon, Tian-Xiao He, Donatella Merlini y Weiping Wang. "Characterization of Riordan Arrays by Special Sequences". En Springer Monographs in Mathematics, 69–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94151-2_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Branch, Donovan, Dennis Davenport, Shakuan Frankson, Jazmin T. Jones y Geoffrey Thorpe. "A & Z Sequences for Double Riordan Arrays". En Springer Proceedings in Mathematics & Statistics, 33–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05375-7_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

He, Tian-Xiao. "Methods of Using Special Function Sequences, Number Sequences, and Riordan Arrays". En Methods for the Summation of Series, 193–304. 5a ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003051305-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía