Índice
Literatura académica sobre el tema "Revêtements bitumineux – Recyclage – Environnement"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Revêtements bitumineux – Recyclage – Environnement".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Revêtements bitumineux – Recyclage – Environnement"
Forton, Andrei-Roman. "Thermomechanical behaviour of bituminous materials including RAP and rejuvenator and environmental impact of their fabrication process". Electronic Thesis or Diss., Lyon, 2021. http://www.theses.fr/2021LYSET005.
Texto completoThe study presented in this thesis has been carried out within a collaboration between Politehnica University Timisoara (UPT) from Romania and Université de Lyon/École Nationale des Travaux Publics de l'État (ENTPE), laboratory LTDS from France. The objectives are, i) the characterization of the thermomechanical performances of binder blends and bituminous mixtures produced with Reclaimed Asphalt Pavement (RAP) and rejuvenator and, ii) the investigation of the potential environmental impact related to the production of a mixture containing different amounts of RAP material and rejuvenator. Therefore, comprehensive experimental investigations were performed on binders and mixtures. All tests on binders and mixtures were performed in the Road Laboratory from UPT, together with the environmental impact assessment. On the other hand, the analyses, estimations and predictions of most parameters/characteristics of binders and mixtures were performed at ENTPE. The study on binders focused on the properties of different binder blends produced by mixing one type of fresh binder (a straight run 50/70 pen. grade), a RAP-extracted binder and a rejuvenator of vegetal origin. The study on mixtures focused on the investigation on 13 bituminous mixtures
Mathias, Vincent. "Recyclage des fraisats d'enrobés dans les bétons routiers". Nantes, 2004. http://www.theses.fr/2004NANT2113.
Texto completoVassaux, Sabine. "Mouillabilité et miscibilité des bitumes : application au recyclage". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS008/document.
Texto completoIn the road industry, the main challenge is to produce warm-mix asphalt mixtures while incorporating high rates of reclaimed asphalt, which come from the deconstruction of old pavement. However, the combination of recycling and the reduction of mix manufacture temperatures (warm mixes) raises technical issues about performance and durability of final pavement materials. In order to better predict final properties of these recycled materials, it is also necessary to understand phenomena occurring during the manufacture of recycled asphalt mixtures in the plant. The objectives of the PhD thesis are to understand and identify factors impacting wetting, remobilization and miscibility phenomena existing between organic and inorganic constituents of the bituminous mixture happening during the manufacturing step. The selected experimental approach consists in studying materials interactions according to a physicochemical approach at interfaces and interphases.Concerning wetting mechanisms at the “bitumen/aggregate” interface, some indicators were selected to assess wetting evolutions on a polished mineral slide. The binder ageing influence has also been studied. The bitumen viscosity and asphaltene content influence the wetting quality as well as the surface composition of the mineral substrate. Results have shown that “bitumen/aggregate” wetting evolutions were governed by a model associated to polished, porous and chemically heterogeneous surfaces.Remobilization of the aged binder (at a lower temperature) by the virgin one (heated at 160°C) has been studied at the interface and at the interphase of “aged binder/virgin binder “samples. At the bituminous interface, the spreading time is linearly influenced by the aged binder viscosity. At the bituminous interphase, bituminous sample analysis has shown that a reduction in the binders temperature difference leads to a better blend. Methodologies have been developed to monitor the aged binder migration using techniques such as X-ray micro fluorescence, infrared microscopy in ATR mode and in imaging ATR mode. Infrared microscopy in imaging ATR mode is a suitable technique to monitor the aged binder migration coupled to the carbonyl function marker resulting from the bitumen oxidation and ageing. Results have identified influent parameters corresponding to the aged binder viscosity and chemical composition, as well as the beneficial effect of a rejuvenator on remobilization. The effect of mechanical agitation energy also improves the binders blend. Concerning X-ray micro fluorescence results, binders remobilization has been assessed by the migration of metals which are involved in the bitumen internal composition. Some hypotheses have been proposed to explain observed migration differences of studied markers.Finally, all customized binder-scale methodologies have been applied to the study of road products incorporating virgin aggregates and reclaimed asphalt pavement. Results have shown similarities between observed trends at the microscopic and macroscopic scales. The hot manufacturing process promotes remobilization while the increase in the reclaimed asphalt rate limits it. The increase in the reclaimed asphalt rate also reduces the asphalt mixture homogeneity degree which has been evaluated through the carbonyl function spatial distribution, obtained by a chemical mappings statistical treatment
Alvarado, patino Nelson Andrey. "Évaluation des performances thermomécaniques des enrobés bitumineux à fort taux de recyclage : Apport du procédé de régénération Fenixfalt". Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0021/document.
Texto completoAn experimental programme has been performed on three types of bituminous mixes with variable recycling rates and the possible addition of rejuvenator. The mix composition and the production process have been defined in order to perform a comparative analysis. The coating process modifies the physico-chemical parameters of the binders, like consistency, glassy transition temperature, cristallizable moiety, aromatics and asphaltenes rates; the above variations are limited by using the rejuvenator. As the RAP content increases, the compactibility and the rutting of the mixes decrease and the viscoelastic stiffness increases, but the rejuvenation reduces these variations. Globally, RAP increases the fatigue resistance of the mixes and flattens the Wöhler curve. Rejuvenation enhances ɛ6 fatigue parameter; fatigue performances increase with R&B temperature and colloidal index of the binder and as the viscous component of the mixes decreases. The positive impact of a high rate of RAP and of the rejuvenation on the allowable traffic has been evaluated from the structural design of a threelayered pavement. At low temperature, the deterioration of the tension ductility and of the stress restrained failure temperature produced by the RAP, is limited by the rejuvenation; a compromise with the fatigue resistance has to be found. The rejuvenated mixes laid as surface layers on a provincial road have experienced a smaller evolution that non rejuvenated mixes
De, mesquita lopes Manuela. "Évaluation de la Durabilité des Enrobés Chauds et Tièdes Contenant des Agrégats d’Enrobés". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2015. http://www.theses.fr/2015ENCM0003/document.
Texto completoThe recycling of asphalt mixtures manufactured with a warm process meets the requirements of sustainable development: it limits the use of new materials, allows waste management and reduces energy consumption. The recycling of asphalt mixtures dates from the 70's. What has changed since that is the will to sustain high rate recycling, defined here by more than 25% of Reclaimed Asphalt Pavement (RAP). RAP contains a part of bitumen that is recoverable for its viscoelastic properties of asphalt binder. It is thus desired to mobilize this aged binder in the recycling process. One of the suspected problems when coupling recycling and warm process is the phenomenon of double coating that could affect rheological properties of the new material: the RAP binder and the new binder do not would mix completely due to the reduction of processing temperatures and would form superimposed layers. This phenomenon would cause mechanical dysfunctions in the asphalt mixture. This raises the question of the quality of the coating of granular surfaces, previously coated, and lack of characterization tools for in situ observation of the interface. In this thesis work, the quality of coating of RAP by a new binder has been evaluated at the microscopic and macroscopic scales. At the microscopic level, it has been proposed to use infrared micro-spectroscopy tool to evaluate the quality of interface between the RAP and the new binder and to follow the spatial distribution of these two components within mixtures produced in laboratory. To do that, it has been necessary to carry out an important experimental development in order to apply an infrared imaging accessory to complex mixtures that are the bituminous mixtures made of different granular fractions and bituminous binder. It was then possible, based on previous identification of internal tracers, to follow the partial remobilization of RAP aging binder. In parallel, at the macroscopic level, a testing protocol has been developed to evaluate the durability of high rate recycled asphalt mixtures (50% of RAP), including mixes produced in a warm process. The current fatigue test is one of the tests that best evaluate the lifetime of a pavement layer. But this accelerated test is biased because the bitumen of the mixtures tested did not have time to aged, as occurs in the case on a real road. In this work, it was proposed to add an aging step of the material before fatigue test, rutting test, modulus test and moisture damage test. It is assumed that the real behavior of the material would range between that of the unaged material and that of aged material. The main obtained results show that warm mixture asphalt containing high rate of RAP exhibit good mechanical performance, with a trend to be more susceptible to fatigue than a similar hot mixture or a warm mixture without added RAP
Martinez, Hernandez Heriberto. "Amélioration de granulats de béton recyclé par bioprécipitation". Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0009.
Texto completoRecycled concrete aggregates (RCA) contain, due to their origin, residual cement paste which gives them high porosity and moderate performance. The porosity leads to a strong water absorption. This is a major difficulty on the industrial level because it complicates the adjustment of water in concrete batches, which allows to control their workability in production. The RCA manufacturing process results in having more paste in the finer particles and therefore more absorption. As a result, while the industry today recycles coarse RCA into concrete relatively well, it uses small amounts of RCA sand because of their greater porosity. Yet, during the manufacture of RCA, about 50% sand and 50% coarse aggregates are obtained. Consequently, the porosity of RCA sand hinders the circular economy of concrete. A number of techniques have been proposed for removing or improving the residual cement paste, but they are expensive. The natural carbonation of RCA by atmospheric CO2 helps with decreasing their water absorption by obstructing their porosity, but this is a several month reaction. Research is ongoing to make accelerated carbonation (by concentrating CO2, for example) on an industrial scale. The present work explores an alternative idea, which consists in forming in a few days, using biocalcifying bacteria, a matrix of CaCO3 around the RCA and especially the sand part, in order to limit the access of water to their porosity. First, candidate non-pathogenic bacteria were identified, selected, adapted to the alkaline medium of RCA, then we checked their ability to produce CaCO3. In a second step, we detemined the conditions, which favor uniform bacterial colonization and production of CaCO3 on the surface of model agar media. Homogeneity is indeed mandatory to obtain good water tightness. We thus confirmed the value of selecting bacteria capable of producing biofilm. Finally, the methods developed were applied to model mortar disks facilitating visual observations. Preliminary results confirm that it is possible to significantly lower the absorption of these mortars within one month. Further work is needed to confirm these encouraging results on sand part of RCA
Nguyen, Thanh Binh. "Valorisation des sédiments de dragage traités par le procédé NOVOSOL(R) dans des matériaux d'assises de chaussée : comportement mécanique et environnemental". Toulouse 3, 2008. http://thesesups.ups-tlse.fr/704/.
Texto completoThe management of dredged sediments is a challenge for our society because of their huge volume. The contamination of heavy metals and organic micro pollutants make that the majority of dredged sediments are regarded as dangerous waste and are put in discharge. This isn't in the same point of view of the durable development policy: the French law supports the valorization so that only ultimate waste is put in discharge. In this context, Solvay Company has developed the process NOVOSOL(r) for the treatment of the dredged sediments polluted. The process comprises two stages: an immobilization of heavy metals by formation of apatite under a phosphatising reaction with acid phosphoric and a destruction of the organic matter by a calcination. The goal of this thesis is to use river sediments treated by the process NOVOSOL(r) in road base materials. Experimental studies in laboratory comprise two aspects: mechanical performance and leaching behaviour. The treated sediments by NOVOSOL(r) are introduced into road base mixes treated with cementitious binders as substitute for regular sand. The preparation of materials according to the normalized methodology in laboratory does not present any difficulty. As the treated sediments content increases, the water demand increases and the materials are less compact than reference material. This is due to the characteristics of treated sediments: important ratio of fines, friability and the porosity of granular. These characteristics have as a consequence to weaken the granular skeleton, which results in a reduction in the stiffness module of materials. On the other side, the reactivity of treated sediments NOVOSOL(r) in the matrix of cimentitious binder and a better homogeneity of materials lead to an improvement of the tensile strength. Mechanical performance of all the materials with of treated sediments NOVOSOL(r) evaluated by index of elastic quality is better than that of the reference material. .
Teguedi, Mohamed Cheikh. "Comportement local des enrobés recyclés : apport des mesures de champs cinématiques". Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC032/document.
Texto completoAsphalt mixtures are complex composite materials constituted of several phases, namely aggregates, bituminous binder and voids. The assembly of these phases defines a highly complex microstructure, which drives the macroscopic response of asphalt mixtures. Classically, both the mechanical and the thermal responses of asphalt materials are characterized by using experiments at the scale of the mixture assuming that the material is homogeneous. At the scale of their constituents, these materials require a measurement technique featuring simultaneously both a good spatial resolution and a good strain resolution. To date, there are only few experimental studies available in the literature that describe the thermal and mechanical behavior of bituminous mixes at the scale of the constituent. The aim of this work is, on the one hand, to evaluate the possibilities of using the grid method (GM) for the analysis of the thermo-mechanical properties of asphalt mixtures and, on the other hand, to characterize the effect of the recycled asphalt pavement (RAP) inclusion on the local behavior of these materials. Full-field measurements provided by GM allow to study the response of these materials at scales ranging from the component to the mixture itself. These results enable us to validate an innovative experimental approach for the analysis of asphalts. It gives access to reliable and rich information at the scale of the microstructure. Some aspects related to the impact of RAP on the local behavior of asphalt were also provided