Artículos de revistas sobre el tema "Reverse osmosis"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Reverse osmosis.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Reverse osmosis".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Rao, Sudhakar M. "Reverse osmosis". Resonance 12, n.º 5 (mayo de 2007): 37–40. http://dx.doi.org/10.1007/s12045-007-0048-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rao, Sudhakar M. "Reverse Osmosis". Resonance 16, n.º 12 (diciembre de 2011): 1333–36. http://dx.doi.org/10.1007/s12045-011-0151-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Altaee, Ali, Guillermo Zaragoza y H. Rost van Tonningen. "Comparison between Forward Osmosis-Reverse Osmosis and Reverse Osmosis processes for seawater desalination". Desalination 336 (marzo de 2014): 50–57. http://dx.doi.org/10.1016/j.desal.2014.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Abdella, Dana L. "Reverse Osmosis Desalination". Marine Technology and SNAME News 31, n.º 03 (1 de julio de 1994): 195–200. http://dx.doi.org/10.5957/mt1.1994.31.3.195.

Texto completo
Resumen
Reverse osmosis (RO) desalination is a method of producing fresh water from seawater by a process similar to filtration, rather than by traditional evaporative distillation. A semipermeable membrane allows water molecules to pass through while blocking the passage of most other ions. The qualities of RO which make it attractive for naval and marine applications are its ability to operate on electric power alone, requiring no heat source; its comparatively low system weight to other methods of freshwater production at sea; and its ability to operate automatically, requiring minimal operator attention. RO's high operational reliability has contributed to its gain in popularity in recent years. RO is used for freshwater production in commercial industry and surface ship applications worldwide. The following research paper discusses RO desalination and presents RO as an alternative to conventional distillation for naval and marine use.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Dukhin, S. S., Nikolai V. Churaev, V. N. Shilov y Viktor M. Starov. "Modelling Reverse Osmosis". Russian Chemical Reviews 57, n.º 6 (30 de junio de 1988): 572–84. http://dx.doi.org/10.1070/rc1988v057n06abeh003374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

McCray, Scott B. "Reverse osmosis technology". Journal of Membrane Science 49, n.º 3 (abril de 1990): 352–53. http://dx.doi.org/10.1016/s0376-7388(00)80649-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

García, Andreina, B. Rodríguez, D. Ozturk, M. Rosales, C. Paredes, F. Cuadra y S. Montserrat. "Desalination Performance of Antibiofouling Reverse Osmosis Membranes". Modern Environmental Science and Engineering 2, n.º 07 (julio de 2016): 481–89. http://dx.doi.org/10.15341/mese(2333-2581)/07.02.2016/007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sagiv, Abraham, Neta Avraham, Carlos G. Dosoretz y Raphael Semiat. "Osmotic backwash mechanism of reverse osmosis membranes". Journal of Membrane Science 322, n.º 1 (septiembre de 2008): 225–33. http://dx.doi.org/10.1016/j.memsci.2008.05.055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shah, Tapan N., Yeomin Yoon, Cynthia L. Pederson y Richard M. Lueptow. "Rotating reverse osmosis and spiral wound reverse osmosis filtration: A comparison". Journal of Membrane Science 285, n.º 1-2 (noviembre de 2006): 353–61. http://dx.doi.org/10.1016/j.memsci.2006.09.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dickel, Gerhard y Abdeslam Chabor. "Osmosis and reverse osmosis. Part 2.—The separation factor of reverse osmosis and its connection with isotonic osmosis". Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 82, n.º 11 (1986): 3293. http://dx.doi.org/10.1039/f19868203293.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Touati, Khaled, Fernando Tadeo y Hamza Elfil. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis". Energy 132 (agosto de 2017): 213–24. http://dx.doi.org/10.1016/j.energy.2017.05.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Liu, Mu. "A Review on Reverse Osmosis Membrane Fouling Diagnosis". International Journal of Oceanography & Aquaculture 7, n.º 2 (2023): 1–8. http://dx.doi.org/10.23880/ijoac-16000238.

Texto completo
Resumen
During long-term operation, reverse osmosis (RO) membrane fouling is an inevitable occurrence that leads to a decline in membrane performance. When the water quality fails to meet specific application requirements, it becomes necessary to replace the deteriorated membranes. Membrane autopsy is widely recognized as the most direct and effective method for studying and identifying membrane fouling. By analyzing the results of membrane autopsy and membrane fouling diagnosis, valuable insights can be gained to optimize the operation of the membrane system, maintain the membrane elements through regular routines, and restore membrane performance. However, the current practice of membrane autopsy and the study of membrane fouling diagnosis lack a systematic and comprehensive approach. This paper aims to address these gaps by introducing various analytical methods for membrane fouling, discussing the existing challenges in practical applications, and reviewing the diagnosis of fouling composition. These findings are expected to shed light on understanding the mechanisms and control methods of membrane fouling, and ultimately enhance the operation of membrane systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Karode, Sandeep. "COUPLING REVERSE OSMOSIS AND OSMOTIC DEHYDRATION: FURTHER INVESTIGATIONS". Separation Science and Technology 36, n.º 14 (2001): 3091–103. http://dx.doi.org/10.1081/ss-100107761.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Salahudeen, Nurudeen. "Process simulation of modelled reverse osmosis for desalination of seawater". Water Practice and Technology 17, n.º 1 (21 de diciembre de 2021): 175–90. http://dx.doi.org/10.2166/wpt.2021.127.

Texto completo
Resumen
Abstract Model equations for prediction of process parameters of reverse osmosis for desalination of seawater were developed via mathematical derivation from basic equations for the reverse osmosis process. A model equation relating the interfacial solute concentration () with the process pressure difference () was developed. Taking the of reverse osmosis as the basic independent variable, further model equations relating other process parameters such as the solute concentration polarity , water flux , osmotic pressure , water output rate (q), power density (Pd) and specific energy consumption (SEC) were developed. Simulation of hypothetical reverse osmosis data using Microsoft Excel Worksheet and Microsoft Windows 10 on a 64-bit operating system was carried out. Simulation results showed that the optimum fluid bulk concentration was = 0.0004 mole/cm3. The optimum rate of increase in the solute rejection factor per unit rise in ΔP was 0.45%. The optimum solute rejection factor was 97.6%. The optimum water output rate, specific energy consumption and power density were 103.2 L/h, 3.65 kWh/m3 and 6.09 W/m2, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kurihara, Masaru. "Seawater Reverse Osmosis Desalination". Membranes 11, n.º 4 (29 de marzo de 2021): 243. http://dx.doi.org/10.3390/membranes11040243.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Das, Abhimanyu y David M. Warsinger. "Batch counterflow reverse osmosis". Desalination 507 (julio de 2021): 115008. http://dx.doi.org/10.1016/j.desal.2021.115008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Flemming, Hans-Curt. "Reverse osmosis membrane biofouling". Experimental Thermal and Fluid Science 14, n.º 4 (mayo de 1997): 382–91. http://dx.doi.org/10.1016/s0894-1777(96)00140-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Watson, BruceM. "High recovery reverse osmosis". Desalination 78, n.º 1 (julio de 1990): 91–97. http://dx.doi.org/10.1016/0011-9164(90)80032-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Rautenbach, R. "Reverse osmosis technology edited". Chemical Engineering and Processing: Process Intensification 25, n.º 1 (febrero de 1989): 56. http://dx.doi.org/10.1016/0255-2701(89)85010-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kumar, Manish, Samer Adham y James DeCarolis. "Reverse osmosis integrity monitoring". Desalination 214, n.º 1-3 (agosto de 2007): 138–49. http://dx.doi.org/10.1016/j.desal.2006.10.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Vyas, Prabhanshu y Smriti G. Solomon. "Knowledge regarding reverse osmosis (R.O) waste water utilization among general public in urban areas". Southeast Asian Journal of Case Report and Review 10, n.º 1 (15 de marzo de 2023): 13–19. http://dx.doi.org/10.18231/j.sajcrr.2023.003.

Texto completo
Resumen
Reverse osmosis (RO) is a water purification process that uses a partial permeable membrane to remove ions, unwanted molecules and larger particles from drinking water. In reverse osmosis, an applied pressure is used to overcome osmotic pressure, a colligative property that is driven by chemical potential differences of the solvent, a thermodynamic parameter. In the process of reverse osmosis the amount of water that is drained is a concern area for the people using the R.O. filtration device in their household because it wasted about 70% of the water to purify just one liter of water. This R.O. waste water can be utilized for various purposes such as washing vehicle like car bike etc, cleaning toilet this study is aimed to assess the knowledge reverse osmosis waste water utilization among general public at Indore.1.To assess the pretest knowledge regarding reverse osmosis (R.O) waste water utilization among general public. 2. To assess the posttest knowledge regarding reverse osmosis waste water utilization among general public. 3. To evaluate the effectiveness of structured teaching program on reverse osmosis (R.O) waste water utilization among general public.H1- there will be significant difference between pretest and posttest knowledge who received structured teaching program regarding the utilization of waste R.O water.Quantitative, pre-experimental, one group pretest posttest design was adopted for the study. Total of 60 general public selected by using simple randomized sampling technique was used. Structured knowledge questionnaire. Data was analyzes using descriptive and inferential statistics. In the pre-test majority of the sample (44 out of 60, 73.3%) had inadequate knowledge and in the post-test, majority (54 out of 60, 90%) had adequate knowledge regarding reverse osmosis. A paired‘t’ test was done and it showed a‘t’ value of 22.34 at 0.05 level of significance, this indicates the effectiveness of structured teaching programme in enhancing the knowledge of the general public. There was no association found between the mean pre-test knowledge of the general public. There was no association found between the mean pre-test knowledge scorer with the selected socio-demographic variable such as age (χ2 = 8.643), gender (χ2 = 4.455), education qualification (χ2 = 4.706), Occupation (χ2 = 2.531), number of family member (χ2 = 5.653) and previous knowledge about reverse osmosis filter water (χ2 =0.393). There is a significant difference between the mean pre-test and post-test knowledge score among general public regarding reverse osmosis waste water utilization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Prior, F. G. R., V. Morecroft, T. Gourlay y K. M. Taylor. "The Therapeutic Significance of Pulse Reverse Osmosis". International Journal of Artificial Organs 19, n.º 8 (agosto de 1996): 487–92. http://dx.doi.org/10.1177/039139889601900810.

Texto completo
Resumen
Pulse reverse osmosis (1) is a new theory of fluid balance and exchange which suggests that the mean blood pressure and osmotic gradient control fluid balance and that the pulse controls fluid exchange. In vitro testing has confirmed some of the physico chemical principles underlying the theory (2). The hypothesis suggests a relationship between mean capillary blood pressure and osmotic gradient. Imbalance in this relationship can be related to the development of hypertension, hypotension, oedema and shock. In an attempt to test this concept mean blood pressures and colloid osmotic pressures were measured and compared in a group of 50 healthy human volunteers. The results suggest a curvilinear correlation between the mean blood pressure and the COP.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Contreras-Martínez, Jorge, Carmen García-Payo, Paula Arribas, Laura Rodríguez-Sáez, Amaia Lejarazu-Larrañaga, Eloy García-Calvo y Mohamed Khayet. "Recycled reverse osmosis membranes for forward osmosis technology". Desalination 519 (diciembre de 2021): 115312. http://dx.doi.org/10.1016/j.desal.2021.115312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Wulan, Wulansari, Dwi Savitri Nur Hidayah, Ragil Johanda, Martin Horas Parulian Butarbutar, Agus Lintang Widodo, Abd Mutakkin y Diah Riski Gusti. "PENGOLAHAN AIR ASIN MENJADI AIR TAWAR MENGGUNAKAN METODE REVERSE OSMOSIS DI KELURAHAN MENDAHARA ILIR". Jurnal Pengabdian Masyarakat Pinang Masak 2, n.º 2 (31 de diciembre de 2021): 54–61. http://dx.doi.org/10.22437/jpm.v2i2.15331.

Texto completo
Resumen
Air mempunyai peranan yang sangat penting dalam kehidupan manusia sehari-hari. Di Indonesia, banyak daerah mengalami permasalahan sumber air. Salah satunya di Kelurahan Mendahara Ilir, Kecamatan Mendahara, Kabupaten Tanjung Jabung Timur, Provinsi Jambi yang mengalami kesulitan mendapatkan air bersih. Masyarakat daerah Mendahara Ilir biasanya mendapatkan air bersih dengan cara menampung air hujan dan sumur bor yang dapat menyebabkan masalah lingkungan seperti penurunan tingkat permukaan tanah. Air laut yang sangat berlimpah dapat dimanfaatkan dan diolah menjadi air bersih dengan menggunakan teknologi membran yaitu Teknologi Reverse Osmosis (RO) yang didalamnya terdapat membran semipermeabel yang mampu melakukan pemisahan air tawar dari larutan garam dengan tekanan yang lebih tinggi dari tekanan osmosa larutan garam. Hasil dari penggunaan tekonolgi reverse osmosis, didapatkanlah hasil perubahan fisik berupa warna, bau, dan juga rasa pada air. Dengan adanya teknologi Reverse osmosis ini diharapkan masyarakat dapat mengurangi kebiasaan menggunakan air hujan dan penggunaan sumur bor/ air tanah untuk memenuhi kebutuhan air bersih yang dapat menyebabkan penurunan tingkat permukaan tanah. Kata Kunci: Air bersih, Reverse osmosis, membran semipermeabel
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Minhas, Muhammad B., Yusufu A. C. Jande y Woo-Seung Kim. "Hybrid Reverse Osmosis-Capacitive Deionization versus Two-Stage Reverse Osmosis: A Comparative Analysis". Chemical Engineering & Technology 37, n.º 7 (6 de junio de 2014): 1137–45. http://dx.doi.org/10.1002/ceat.201300681.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Khramtsov, A. G. "Technological breakthrough of the agrarian-and-food innovations in dairy case for example of universal agricultural raw materials. Reverse osmosis". Agrarian-And-Food Innovations 14 (29 de junio de 2021): 7–20. http://dx.doi.org/10.31208/2618-7353-2021-14-7-20.

Texto completo
Resumen
Aim. Consideration of the membrane technology process – reverse osmosis – by directed and controlled processing of whey and its filtrates through special semipermeable partitions (filter membranes) with a pore size from 0.1 to 1.0 nm, carried out at a pressure of 3.0 - 10.0 MPa with the release of particles (cutting off) with a molecular weight of 100 Daltons. Reverse osmosis allows you to concentrate all the compounds of whey and filtrates, separating almost distilled water (condensate). Discussion. In the molecular sieve separation system, reverse osmosis logically continues the membrane treatment of filtrates (permeates) of native, as well as separated whey and their microfiltrates, ultrafiltrates, nanofiltrates and diafiltrates. In principle, the reverse osmosis process should be implemented to pre-concentrate the whey, which will eliminate its loss (draining) and expand the range of use. OO is promising for processing salted whey with the removal of unwanted sodium chloride, as well as for cleaning the condensate of evaporation plants from the components of dairy raw materials that come with foam and secondary steam. Conclusion. In general, for the dairy industry of the food industry of the agro-industrial complex, reverse osmotic treatment is necessary for the implementation of a closed production cycle with a recycled water supply.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tu, Qingsong, Tiange Li, Ao Deng, Kevin Zhu, Yifei Liu y Shaofan Li. "A scale-up nanoporous membrane centrifuge for reverse osmosis desalination without fouling". TECHNOLOGY 06, n.º 01 (marzo de 2018): 36–48. http://dx.doi.org/10.1142/s2339547818500024.

Texto completo
Resumen
A scale-up nanoporous membrane centrifuge is designed and modeled. It can be used for nanoscale scale separation including reverse osmosis desalination. There are micron-size pores on the wall of the centrifuge and nanoscale pores on local graphene membrane patches that cover the micron-size pores. In this work, we derived the critical angular velocity required to counter-balance osmosis force, so that the reverse-osmosis (RO) desalination process can proceed. To validate this result, we conducted a large scale (four million atoms) full atom molecular dynamics (MD) simulation to examine the critical angular velocity required for reverse osmosis at nanoscale. It is shown that the analytical results derived based on fluid mechanics and the simulation results observed in MD simulation are consistent and well matched. The main advantage of such nanomaterial based centrifuge is its intrinsic anti-fouling ability to clear [Formula: see text] and [Formula: see text] ions accumulated at the vicinity of the pores due to the Coriolis effect. Analyses have been conducted to study the relation between osmotic pressure, centrifugal pressure, and water permeability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Parra, Abdon, Mario Noriega, Lidia Yokoyama y Miguel Bagajewicz. "Does Pressure-Retarded Osmosis Help Reverse Osmosis in Desalination?" Industrial & Engineering Chemistry Research 60, n.º 11 (15 de marzo de 2021): 4366–74. http://dx.doi.org/10.1021/acs.iecr.0c04382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Murad, S. y J. G. Powles. "Computer simulation of osmosis and reverse osmosis in solutions". Chemical Physics Letters 225, n.º 4-6 (agosto de 1994): 437–40. http://dx.doi.org/10.1016/0009-2614(94)87108-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kim, Jung Eun, Sherub Phuntsho, Syed Muztuza Ali, Joon Young Choi y Ho Kyong Shon. "Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system". Water Research 128 (enero de 2018): 183–92. http://dx.doi.org/10.1016/j.watres.2017.10.042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bilstad, T. y M. V. Madland. "Leachate Minimization by Reverse Osmosis". Water Science and Technology 25, n.º 3 (1 de febrero de 1992): 117–20. http://dx.doi.org/10.2166/wst.1992.0084.

Texto completo
Resumen
Leachates from chemical and domestic landfills are defined as hazardous wastewater. Quantitative and qualitative control of leachate can be performed by membrane separation of the total produced leachate volume. Dissolved and suspended solids in the leachate are removed from the major portion of the water phase and either returned to the landfill or further treated. The particle - free permeate meets the effluent requirements for direct discharge to virtually any watercourse. An untreated leachate flow is concentrated thirteen times by tubular type reverse osmosis. The separation efficiencies are 99% for iron, copper, chromium and zinc. For suspended solids the removal is 100%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ishibashi, Ryo. "Fouling Resistant Reverse Osmosis Elements". MEMBRANE 44, n.º 3 (2019): 136–39. http://dx.doi.org/10.5360/membrane.44.136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

KISO, Yoshiaki y Takane KITAO. "Reverse osmosis and liquid chromatography." membrane 12, n.º 5 (1987): 272–80. http://dx.doi.org/10.5360/membrane.12.272.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Henthorne, Lisa. "Trends in Seawater Reverse Osmosis". IDA Journal of Desalination and Water Reuse 2, n.º 3 (julio de 2010): 12–13. http://dx.doi.org/10.1179/ida.2010.2.3.12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

zum Kolk, Christian, Wolfgang Hater y Niclas Kempken. "Cleaning of reverse osmosis membranes". Desalination and Water Treatment 51, n.º 1-3 (27 de septiembre de 2012): 343–51. http://dx.doi.org/10.1080/19443994.2012.715424.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Isaias, Nicos P. "Experience in reverse osmosis pretreatment". Desalination 139, n.º 1-3 (septiembre de 2001): 57–64. http://dx.doi.org/10.1016/s0011-9164(01)00294-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ning, Robert Y. "Arsenic removal by reverse osmosis". Desalination 143, n.º 3 (junio de 2002): 237–41. http://dx.doi.org/10.1016/s0011-9164(02)00262-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Dababneh, Awwad J. y M. A. Al-Nimr. "A reverse osmosis desalination unit". Desalination 153, n.º 1-3 (febrero de 2003): 265–72. http://dx.doi.org/10.1016/s0011-9164(02)01145-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kryvoruchko, Antonina P. y Boris Yu Kornilovich. "Water deactivation by reverse osmosis". Desalination 157, n.º 1-3 (agosto de 2003): 403–7. http://dx.doi.org/10.1016/s0011-9164(03)00423-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kahdim, Abdul Sattar, Saleh Ismail y Alaa' Abdulrazaq Jassim. "Modeling of reverse osmosis systems". Desalination 158, n.º 1-3 (agosto de 2003): 323–29. http://dx.doi.org/10.1016/s0011-9164(03)00471-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Gagliardo, Paul, Samer Adham, Rhodes Trussell y Adam Olivieri. "Water repurification via reverse osmosis". Desalination 117, n.º 1-3 (septiembre de 1998): 73–78. http://dx.doi.org/10.1016/s0011-9164(98)00069-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Mann, J. "Reverse osmosis/ultrafiltration process principles". Chemical Engineering Journal 36, n.º 3 (noviembre de 1987): 196. http://dx.doi.org/10.1016/0300-9467(87)80029-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Heyden, W. "Seawater desalination by reverse osmosis". Desalination 52, n.º 2 (enero de 1985): 187–99. http://dx.doi.org/10.1016/0011-9164(85)85008-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ohya, H., K. Yajima y R. Miyashita. "Design of reverse osmosis process". Desalination 63 (enero de 1987): 119–33. http://dx.doi.org/10.1016/0011-9164(87)90045-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Azoury, R., J. Garside y W. G. Robertson. "Crystallization processes using reverse osmosis". Journal of Crystal Growth 79, n.º 1-3 (diciembre de 1986): 654–57. http://dx.doi.org/10.1016/0022-0248(86)90533-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Buonomenna, M. G. "Nano-enhanced reverse osmosis membranes". Desalination 314 (abril de 2013): 73–88. http://dx.doi.org/10.1016/j.desal.2013.01.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ikeda, Kenichi y John Tomaschke. "Noble reverse osmosis composite membrane". Desalination 96, n.º 1-3 (junio de 1994): 113–18. http://dx.doi.org/10.1016/0011-9164(94)85162-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Lee, Tae, Anditya Rahardianto y Yoram Cohen. "Flexible reverse osmosis (FLERO) desalination". Desalination 452 (febrero de 2019): 123–31. http://dx.doi.org/10.1016/j.desal.2018.10.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Alspach, Brent. "Charting the Reverse Osmosis Renaissance". Journal - American Water Works Association 111, n.º 8 (agosto de 2019): 85–87. http://dx.doi.org/10.1002/awwa.1349.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Sinisgalli, Paul D. y James L. McNutt. "Industrial Use of Reverse Osmosis". Journal - American Water Works Association 78, n.º 5 (mayo de 1986): 47–51. http://dx.doi.org/10.1002/j.1551-8833.1986.tb05743.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía