Literatura académica sobre el tema "Réseaux de neurones LSTM"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Réseaux de neurones LSTM".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Réseaux de neurones LSTM"

1

HARINAIVO, A., H. HAUDUC y I. TAKACS. "Anticiper l’impact de la météo sur l’influent des stations d’épuration grâce à l’intelligence artificielle". Techniques Sciences Méthodes 3 (20 de marzo de 2023): 33–42. http://dx.doi.org/10.36904/202303033.

Texto completo
Resumen
Le changement climatique a pour conséquence l’apparition de forts événements pluvieux de plus en plus fréquents, occasionnant de fortes variations de débit et de concentrations à l’influent des stations d’épuration. La connaissance des risques d’orage et des débits potentiels plusieurs heures ou plusieurs jours en avance permettrait d’anticiper les adaptations opérationnelles pour préparer la station et protéger les différents ouvrages des risques de défaillance. Dans cette étude, les données météorologiques (pluies, température, vents, humidités, précipitations…) et l’historique des données d’influent de la station sont utilisés pour entraîner un algorithme d’intelligence artificielle, d’apprentissage automatique et d’apprentissage profond pour prédire les débits entrants sur la station jusqu’à une semaine en avance. Trois jeux de données journalières et horaires, de 1 à 3 ans, sont utilisés pour entraîner un modèle de Forêt aléatoire à 30 arbres, un modèle LSTM (long short-term memory) et un modèle GRU (gate recurrent unit) à trois couches de 100 neurones suivis chacun d’un dropout de 20 % et une couche de sortie entièrement connectée. Les données sont préalablement nettoyées pour supprimer les valeurs aberrantes et sont réparties à 80 % pour les données pour l’apprentissage et 20 % pour les données de test afin d’obtenir des modèles avec les meilleures prédictions. Les algorithmes utilisés dans cette étude sont simples et détectent bien les pics. La durée de l’entraînement sur les données de trois ans se fait en moins de deux minutes pour la Forêt aléatoire et en moins d’une demi-heure pour les réseaux de neurones LSTM et GRU. Les résultats montrent que les données horaires et la prise en compte de l’effet de l’historique par l’utilisation des réseaux de neurones récurrents LSTM et GRU permettent d’obtenir une meilleure prédiction des débits d’influent. Les séries de données plus longues permettent également un meilleur apprentissage des algorithmes et une meilleure prédiction du modèle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Othmani-Guibourg, Mehdi William, Amal El Fallah Seghrouchni y Jean-Loup Farges. "LSTM Path-Maker : une stratégie à base de réseau de neurones LSTM pour la patrouille multiagent". Revue Ouverte d'Intelligence Artificielle 3, n.º 3-4 (8 de abril de 2022): 345–72. http://dx.doi.org/10.5802/roia.34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

-Y. HAGGEGE, Joseph. "Les réseaux de neurones". Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bélanger, M., N. El-Jabi, D. Caissie, F. Ashkar y J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple". Revue des sciences de l'eau 18, n.º 3 (12 de abril de 2005): 403–21. http://dx.doi.org/10.7202/705565ar.

Texto completo
Resumen
La température de l'eau en rivière est un paramètre ayant une importance majeure pour la vie aquatique. Les séries temporelles décrivant ce paramètre thermique existent, mais elles sont moins nombreuses et souvent courtes, ou comptent parfois des valeurs manquantes. Cette étude présente la modélisation de la température de l'eau en utilisant des réseaux de neurones et la régression linéaire multiple pour relier la température de l'eau à celle de l'air et le débit du ruisseau Catamaran, situé au Nouveau-Brunswick, Canada. Une recherche multidisciplinaire à long terme se déroule présentement sur ce site. Les données utilisées sont de 1991 à 2000 et comprennent la température de l'air de la journée en cours, de la veille et de l'avant-veille, le débit ainsi que le temps transformé en série trigonométrique. Les données de 1991 à 1995 ont été utilisées pour l'entraînement ou la calibration du modèle tandis que les données de 1996 à 2000 ont été utilisées pour la validation du modèle. Les coefficients de détermination obtenus pour l'entraînement sont de 94,2 % pour les réseaux de neurones et de 92,6 % pour la régression linéaire multiple, ce qui donne un écart-type des erreurs de 1,01 C pour les réseaux de neurones et de 1,05 C pour la régression linéaire multiple. Pour la validation, les coefficients de détermination sont de 92,2 % pour les réseaux de neurones et de 91,6 % pour la régression linéaire multiple, ce qui se traduit en un écart-type des erreurs de 1,10 C pour les réseaux de neurones et de 1,25 C pour la régression linéaire multiple. Durant la période d'étude (1991-2000), le biais a été calculé à +0,11 C pour le modèle de réseaux de neurones et à -0,26 °C pour le modèle de régression. Ces résultats permettent de conclure qu'il est possible de prévoir la température de l'eau de petits cours d'eau en utilisant la température de l'air et le débit, aussi bien avec les réseaux de neurones qu'avec la régression linéaire multiple. Les réseaux de neurones semblent donner un ajustement aux données légèrement meilleur que celui offert par la régression linéaire multiple, toutefois ces deux approches de modélisation démontrent une bonne performance pour la prédiction de la température de l'eau en rivière.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mézard, Marc y Jean-Pierre Nadal. "Réseaux de neurones et physique statistique". Intellectica. Revue de l'Association pour la Recherche Cognitive 9, n.º 1 (1990): 213–45. http://dx.doi.org/10.3406/intel.1990.884.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Réseaux de neurones LSTM"

1

Gelly, Grégory. "Réseaux de neurones récurrents pour le traitement automatique de la parole". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS295/document.

Texto completo
Resumen
Le domaine du traitement automatique de la parole regroupe un très grand nombre de tâches parmi lesquelles on trouve la reconnaissance de la parole, l'identification de la langue ou l'identification du locuteur. Ce domaine de recherche fait l'objet d'études depuis le milieu du vingtième siècle mais la dernière rupture technologique marquante est relativement récente et date du début des années 2010. C'est en effet à ce moment qu'apparaissent des systèmes hybrides utilisant des réseaux de neurones profonds (DNN) qui améliorent très notablement l'état de l'art. Inspirés par le gain de performance apporté par les DNN et par les travaux d'Alex Graves sur les réseaux de neurones récurrents (RNN), nous souhaitions explorer les capacités de ces derniers. En effet, les RNN nous semblaient plus adaptés que les DNN pour traiter au mieux les séquences temporelles du signal de parole. Dans cette thèse, nous nous intéressons tout particulièrement aux RNN à mémoire court-terme persistante (Long Short Term Memory (LSTM) qui permettent de s'affranchir d'un certain nombre de difficultés rencontrées avec des RNN standards. Nous augmentons ce modèle et nous proposons des processus d'optimisation permettant d'améliorer les performances obtenues en segmentation parole/non-parole et en identification de la langue. En particulier, nous introduisons des fonctions de coût dédiées à chacune des deux tâches: un simili-WER pour la segmentation parole/non-parole dans le but de diminuer le taux d'erreur d'un système de reconnaissance de la parole et une fonction de coût dite de proximité angulaire pour les problèmes de classification multi-classes tels que l'identification de la langue parlée
Automatic speech processing is an active field of research since the 1950s. Within this field the main area of research is automatic speech recognition but simpler tasks such as speech activity detection, language identification or speaker identification are also of great interest to the community. The most recent breakthrough in speech processing appeared around 2010 when speech recognition systems using deep neural networks drastically improved the state-of-the-art. Inspired by this gains and the work of Alex Graves on recurrent neural networks (RNN), we decided to explore the possibilities brought by these models on realistic data for two different tasks: speech activity detection and spoken language identification. In this work, we closely look at a specific model for the RNNs: the Long Short Term Memory (LSTM) which mitigates a lot of the difficulties that can arise when training an RNN. We augment this model and introduce optimization methods that lead to significant performance gains for speech activity detection and language identification. More specifically, we introduce a WER-like loss function to train a speech activity detection system so as to minimize the word error rate of a downstream speech recognition system. We also introduce two different methods to successfully train a multiclass classifier based on neural networks for tasks such as LID. The first one is based on a divide-and-conquer approach and the second one is based on an angular proximity loss function. Both yield performance gains but also speed up the training process
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Stuner, Bruno. "Cohorte de réseaux de neurones récurrents pour la reconnaissance de l'écriture". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR024.

Texto completo
Resumen
Les méthodes à l’état de l’art de la reconnaissance de l’écriture sont fondées sur des réseaux de neurones récurrents (RNN) à cellules LSTM ayant des performances remarquables. Dans cette thèse, nous proposons deux nouveaux principes la vérification lexicale et la génération de cohorte afin d’attaquer les problèmes de la reconnaissance de l’écriture : i) le problème des grands lexiques et des décodages dirigés par le lexique ii) la problématique de combinaison de modèles optiques pour une meilleure reconnaissance iii) la nécessité de constituer de très grands ensembles de données étiquetées dans un contexte d’apprentissage profond. La vérification lexicale est une alternative aux décodages dirigés par le lexique peu étudiée à cause des faibles performances des modèles optiques historiques (HMM). Nous montrons dans cette thèse qu’elle constitue une alternative intéressante aux approches dirigées par le lexique lorsqu’elles s’appuient sur des modèles optiques très performants comme les RNN LSTM. La génération de cohorte permet de générer facilement et rapidement un grand nombre de réseaux récurrents complémentaires en un seul apprentissage. De ces deux techniques nous construisons et proposons un nouveau schéma de cascade pour la reconnaissance de mots isolés, une nouvelle combinaison au niveau ligne LV-ROVER et une nouvelle stratégie d’auto-apprentissage de RNN LSTM pour la reconnaissance de mots isolés. La cascade proposée permet de combiner avec la vérification lexicale des milliers de réseaux et atteint des résultats à l’état de l’art pour les bases Rimes et IAM. LV-ROVER a une complexité réduite par rapport à l’algorithme original ROVER et permet de combiner des centaines de réseaux sans modèle de langage tout en dépassant l’état de l’art pour la reconnaissance de lignes sur le jeu de donnéesRimes. Notre stratégie d’auto-apprentissage permet d’apprendre à partir d’un seul réseau BLSTM et sans paramètres grâce à la cohorte et la vérification lexicale, elle montre d’excellents résultats sur les bases Rimes et IAM
State-of-the-art methods for handwriting recognition are based on LSTM recurrent neural networks (RNN) which achieve high performance recognition. In this thesis, we propose the lexicon verification and the cohort generation as two new building blocs to tackle the problem of handwriting recognition which are : i) the large vocabulary problem and the use of lexicon driven methods ii) the combination of multiple optical models iii) the need for large labeled dataset for training RNN. The lexicon verification is an alternative to the lexicon driven decoding process and can deal with lexicons of 3 millions words. The cohort generation is a method to get easily and quickly a large number of complementary recurrent neural networks extracted from a single training. From these two new techniques we build and propose a new cascade scheme for isolated word recognition, a new line level combination LV-ROVER and a new self-training strategy to train LSTM RNN for isolated handwritten words recognition. The proposed cascade combines thousands of LSTM RNN with lexicon verification and achieves state-of-the art word recognition performance on the Rimes and IAM datasets. The Lexicon Verified ROVER : LV-ROVER, has a reduce complexity compare to the original ROVER algorithm and combine hundreds of recognizers without language models while achieving state of the art for handwritten line text on the RIMES dataset. Our self-training strategy use both labeled and unlabeled data with the unlabeled data being self-labeled by its own lexicon verified predictions. The strategy enables self-training with a single BLSTM and show excellent results on the Rimes and Iam datasets
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bouaziz, Mohamed. "Réseaux de neurones récurrents pour la classification de séquences dans des flux audiovisuels parallèles". Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0224/document.

Texto completo
Resumen
Les flux de contenus audiovisuels peuvent être représentés sous forme de séquences d’événements (par exemple, des suites d’émissions, de scènes, etc.). Ces données séquentielles se caractérisent par des relations chronologiques pouvant exister entre les événements successifs. Dans le contexte d’une chaîne TV, la programmation des émissions suit une cohérence définie par cette même chaîne, mais peut également être influencée par les programmations des chaînes concurrentes. Dans de telles conditions,les séquences d’événements des flux parallèles pourraient ainsi fournir des connaissances supplémentaires sur les événements d’un flux considéré.La modélisation de séquences est un sujet classique qui a été largement étudié, notamment dans le domaine de l’apprentissage automatique. Les réseaux de neurones récurrents de type Long Short-Term Memory (LSTM) ont notamment fait leur preuve dans de nombreuses applications incluant le traitement de ce type de données. Néanmoins,ces approches sont conçues pour traiter uniquement une seule séquence d’entrée à la fois. Notre contribution dans le cadre de cette thèse consiste à élaborer des approches capables d’intégrer conjointement des données séquentielles provenant de plusieurs flux parallèles.Le contexte applicatif de ce travail de thèse, réalisé en collaboration avec le Laboratoire Informatique d’Avignon et l’entreprise EDD, consiste en une tâche de prédiction du genre d’une émission télévisée. Cette prédiction peut s’appuyer sur les historiques de genres des émissions précédentes de la même chaîne mais également sur les historiques appartenant à des chaînes parallèles. Nous proposons une taxonomie de genres adaptée à de tels traitements automatiques ainsi qu’un corpus de données contenant les historiques parallèles pour 4 chaînes françaises.Deux méthodes originales sont proposées dans ce manuscrit, permettant d’intégrer les séquences des flux parallèles. La première, à savoir, l’architecture des LSTM parallèles(PLSTM) consiste en une extension du modèle LSTM. Les PLSTM traitent simultanément chaque séquence dans une couche récurrente indépendante et somment les sorties de chacune de ces couches pour produire la sortie finale. Pour ce qui est de la seconde proposition, dénommée MSE-SVM, elle permet de tirer profit des avantages des méthodes LSTM et SVM. D’abord, des vecteurs de caractéristiques latentes sont générés indépendamment, pour chaque flux en entrée, en prenant en sortie l’événement à prédire dans le flux principal. Ces nouvelles représentations sont ensuite fusionnées et données en entrée à un algorithme SVM. Les approches PLSTM et MSE-SVM ont prouvé leur efficacité dans l’intégration des séquences parallèles en surpassant respectivement les modèles LSTM et SVM prenant uniquement en compte les séquences du flux principal. Les deux approches proposées parviennent bien à tirer profit des informations contenues dans les longues séquences. En revanche, elles ont des difficultés à traiter des séquences courtes.L’approche MSE-SVM atteint globalement de meilleures performances que celles obtenues par l’approche PLSTM. Cependant, le problème rencontré avec les séquences courtes est plus prononcé pour le cas de l’approche MSE-SVM. Nous proposons enfin d’étendre cette approche en permettant d’intégrer des informations supplémentaires sur les événements des séquences en entrée (par exemple, le jour de la semaine des émissions de l’historique). Cette extension, dénommée AMSE-SVM améliore remarquablement la performance pour les séquences courtes sans les baisser lorsque des séquences longues sont présentées
In the same way as TV channels, data streams are represented as a sequence of successive events that can exhibit chronological relations (e.g. a series of programs, scenes, etc.). For a targeted channel, broadcast programming follows the rules defined by the channel itself, but can also be affected by the programming of competing ones. In such conditions, event sequences of parallel streams could provide additional knowledge about the events of a particular stream. In the sphere of machine learning, various methods that are suited for processing sequential data have been proposed. Long Short-Term Memory (LSTM) Recurrent Neural Networks have proven its worth in many applications dealing with this type of data. Nevertheless, these approaches are designed to handle only a single input sequence at a time. The main contribution of this thesis is about developing approaches that jointly process sequential data derived from multiple parallel streams. The application task of our work, carried out in collaboration with the computer science laboratory of Avignon (LIA) and the EDD company, seeks to predict the genre of a telecast. This prediction can be based on the histories of previous telecast genres in the same channel but also on those belonging to other parallel channels. We propose a telecast genre taxonomy adapted to such automatic processes as well as a dataset containing the parallel history sequences of 4 French TV channels. Two original methods are proposed in this work in order to take into account parallel stream sequences. The first one, namely the Parallel LSTM (PLSTM) architecture, is an extension of the LSTM model. PLSTM simultaneously processes each sequence in a separate recurrent layer and sums the outputs of each of these layers to produce the final output. The second approach, called MSE-SVM, takes advantage of both LSTM and Support Vector Machines (SVM) methods. Firstly, latent feature vectors are independently generated for each input stream, using the output event of the main one. These new representations are then merged and fed to an SVM algorithm. The PLSTM and MSE-SVM approaches proved their ability to integrate parallel sequences by outperforming, respectively, the LSTM and SVM models that only take into account the sequences of the main stream. The two proposed approaches take profit of the information contained in long sequences. However, they have difficulties to deal with short ones. Though MSE-SVM generally outperforms the PLSTM approach, the problem experienced with short sequences is more pronounced for MSE-SVM. Finally, we propose to extend this approach by feeding additional information related to each event in the input sequences (e.g. the weekday of a telecast). This extension, named AMSE-SVM, has a remarkably better behavior with short sequences without affecting the performance when processing long ones
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chraibi, Kaadoud Ikram. "apprentissage de séquences et extraction de règles de réseaux récurrents : application au traçage de schémas techniques". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0032/document.

Texto completo
Resumen
Deux aspects importants de la connaissance qu'un individu a pu acquérir par ses expériences correspondent à la mémoire sémantique (celle des connaissances explicites, comme par exemple l'apprentissage de concepts et de catégories décrivant les objets du monde) et la mémoire procédurale (connaissances relatives à l'apprentissage de règles ou de la syntaxe). Cette "mémoire syntaxique" se construit à partir de l'expérience et notamment de l'observation de séquences, suites d'objets dont l'organisation séquentielle obéit à des règles syntaxiques. Elle doit pouvoir être utilisée ultérieurement pour générer des séquences valides, c'est-à-dire respectant ces règles. Cette production de séquences valides peut se faire de façon explicite, c'est-à-dire en évoquant les règles sous-jacentes, ou de façon implicite, quand l'apprentissage a permis de capturer le principe d'organisation des séquences sans recours explicite aux règles. Bien que plus rapide, plus robuste et moins couteux en termes de charge cognitive que le raisonnement explicite, le processus implicite a pour inconvénient de ne pas donner accès aux règles et de ce fait, de devenir moins flexible et moins explicable. Ces mécanismes mnésiques s'appliquent aussi à l'expertise métier : la capitalisation des connaissances pour toute entreprise est un enjeu majeur et concerne aussi bien celles explicites que celles implicites. Au début, l'expert réalise un choix pour suivre explicitement les règles du métier. Mais ensuite, à force de répétition, le choix se fait automatiquement, sans évocation explicite des règles sous-jacentes. Ce changement d'encodage des règles chez un individu en général et particulièrement chez un expert métier peut se révéler problématique lorsqu'il faut expliquer ou transmettre ses connaissances. Si les concepts métiers peuvent être formalisés, il en va en général de tout autre façon pour l'expertise. Dans nos travaux, nous avons souhaité nous pencher sur les séquences de composants électriques et notamment la problématique d’extraction des règles cachées dans ces séquences, aspect important de l’extraction de l’expertise métier à partir des schémas techniques. Nous nous plaçons dans le domaine connexionniste, et nous avons en particulier considéré des modèles neuronaux capables de traiter des séquences. Nous avons implémenté deux réseaux de neurones récurrents : le modèle de Elman et un modèle doté d’unités LSTM (Long Short Term Memory). Nous avons évalué ces deux modèles sur différentes grammaires artificielles (grammaire de Reber et ses variations) au niveau de l’apprentissage, de leurs capacités de généralisation de celui-ci et leur gestion de dépendances séquentielles. Finalement, nous avons aussi montré qu’il était possible d’extraire les règles encodées (issues des séquences) dans le réseau récurrent doté de LSTM, sous la forme d’automate. Le domaine électrique est particulièrement pertinent pour cette problématique car il est plus contraint avec une combinatoire plus réduite que la planification de tâches dans des cas plus généraux comme la navigation par exemple, qui pourrait constituer une perspective de ce travail
There are two important aspects of the knowledge that an individual acquires through experience. One corresponds to the semantic memory (explicit knowledge, such as the learning of concepts and categories describing the objects of the world) and the other, the procedural or syntactic memory (knowledge relating to the learning of rules or syntax). This "syntactic memory" is built from experience and particularly from the observation of sequences of objects whose organization obeys syntactic rules.It must have the capability to aid recognizing as well as generating valid sequences in the future, i.e., sequences respecting the learnt rules. This production of valid sequences can be done either in an explicit way, that is, by evoking the underlying rules, or implicitly, when the learning phase has made it possible to capture the principle of organization of the sequences without explicit recourse to the rules. Although the latter is faster, more robust and less expensive in terms of cognitive load as compared to explicit reasoning, the implicit process has the disadvantage of not giving access to the rules and thus becoming less flexible and less explicable. These mnemonic mechanisms can also be applied to business expertise. The capitalization of information and knowledge in general, for any company is a major issue and concerns both the explicit and implicit knowledge. At first, the expert makes a choice to explicitly follow the rules of the trade. But then, by dint of repetition, the choice is made automatically, without explicit evocation of the underlying rules. This change in encoding rules in an individual in general and particularly in a business expert can be problematic when it is necessary to explain or transmit his or her knowledge. Indeed, if the business concepts can be formalized, it is usually in any other way for the expertise which is more difficult to extract and transmit.In our work, we endeavor to observe sequences of electrical components and in particular the problem of extracting rules hidden in these sequences, which are an important aspect of the extraction of business expertise from technical drawings. We place ourselves in the connectionist domain, and we have particularly considered neuronal models capable of processing sequences. We implemented two recurrent neural networks: the Elman model and a model with LSTM (Long Short Term Memory) units. We have evaluated these two models on different artificial grammars (Reber's grammar and its variations) in terms of learning, their generalization abilities and their management of sequential dependencies. Finally, we have also shown that it is possible to extract the encoded rules (from the sequences) in the recurrent network with LSTM units, in the form of an automaton. The electrical domain is particularly relevant for this problem. It is more constrained with a limited combinatorics than the planning of tasks in general cases like navigation for example, which could constitute a perspective of this work
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Adam, Chloé. "Pattern Recognition in the Usage Sequences of Medical Apps". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC027/document.

Texto completo
Resumen
Les radiologues utilisent au quotidien des solutions d'imagerie médicale pour le diagnostic. L'amélioration de l'expérience utilisateur est toujours un axe majeur de l'effort continu visant à améliorer la qualité globale et l'ergonomie des produits logiciels. Les applications de monitoring permettent en particulier d'enregistrer les actions successives effectuées par les utilisateurs dans l'interface du logiciel. Ces interactions peuvent être représentées sous forme de séquences d'actions. Sur la base de ces données, ce travail traite de deux sujets industriels : les pannes logicielles et l'ergonomie des logiciels. Ces deux thèmes impliquent d'une part la compréhension des modes d'utilisation, et d'autre part le développement d'outils de prédiction permettant soit d'anticiper les pannes, soit d'adapter dynamiquement l'interface logicielle en fonction des besoins des utilisateurs. Tout d'abord, nous visons à identifier les origines des crashes du logiciel qui sont essentielles afin de pouvoir les corriger. Pour ce faire, nous proposons d'utiliser un test binomial afin de déterminer quel type de pattern est le plus approprié pour représenter les signatures de crash. L'amélioration de l'expérience utilisateur par la personnalisation et l'adaptation des systèmes aux besoins spécifiques de l'utilisateur exige une très bonne connaissance de la façon dont les utilisateurs utilisent le logiciel. Afin de mettre en évidence les tendances d'utilisation, nous proposons de regrouper les sessions similaires. Nous comparons trois types de représentation de session dans différents algorithmes de clustering. La deuxième contribution de cette thèse concerne le suivi dynamique de l'utilisation du logiciel. Nous proposons deux méthodes -- basées sur des représentations différentes des actions d'entrée -- pour répondre à deux problématiques industrielles distinctes : la prédiction de la prochaine action et la détection du risque de crash logiciel. Les deux méthodologies tirent parti de la structure récurrente des réseaux LSTM pour capturer les dépendances entre nos données séquentielles ainsi que leur capacité à traiter potentiellement différents types de représentations d'entrée pour les mêmes données
Radiologists use medical imaging solutions on a daily basis for diagnosis. Improving user experience is a major line of the continuous effort to enhance the global quality and usability of software products. Monitoring applications enable to record the evolution of various software and system parameters during their use and in particular the successive actions performed by the users in the software interface. These interactions may be represented as sequences of actions. Based on this data, this work deals with two industrial topics: software crashes and software usability. Both topics imply on one hand understanding the patterns of use, and on the other developing prediction tools either to anticipate crashes or to dynamically adapt software interface according to users' needs. First, we aim at identifying crash root causes. It is essential in order to fix the original defects. For this purpose, we propose to use a binomial test to determine which type of patterns is the most appropriate to represent crash signatures. The improvement of software usability through customization and adaptation of systems to each user's specific needs requires a very good knowledge of how users use the software. In order to highlight the trends of use, we propose to group similar sessions into clusters. We compare 3 session representations as inputs of different clustering algorithms. The second contribution of our thesis concerns the dynamical monitoring of software use. We propose two methods -- based on different representations of input actions -- to address two distinct industrial issues: next action prediction and software crash risk detection. Both methodologies take advantage of the recurrent structure of LSTM neural networks to capture dependencies among our sequential data as well as their capacity to potentially handle different types of input representations for the same data
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hambarek, Djamel Eddine. "Développement d'une méthodologie d'essais dynamiques appliquée à la mise au point moteur". Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0035.

Texto completo
Resumen
Les travaux de cette thèse de doctorat s’inscrivent dans le contexte d’évolution desnormes de dépollution des moteurs thermiquescouplée aux exigences de baisse de la consommation des véhicules. La méthodologie développée tente de répondre avec un processus industriel efficace aux exigences d’émissions en roulage réel, dites RDE (Real Driving Emissions). La méthode proposée est basée sur la technique des plans d’expériences dynamiques utilisant les suites à faible discrépance : les résultats d’essais sont utilisés afin d’entraîner un modèle de réseau de neurones type LSTM capable de prédire l’historique des sorties (les masses de polluants CO, HC, NOx) pour chaque combinaison donnée en entrée. Le modèle est utilisé ensuite pour nourrir une boucle d’optimisation basée sur un algorithme génétique afin de mettre au point les cartographies moteur optimales.Les travaux se focalisent sur la phase de mise en action du moteur, qui est comprise entre l’instant de démarrage et l’instant où le système de post-traitement est amorcé, c’est-à-dire lorsque le catalyseur a atteint la température lui permettant d’être efficace. Cette phase est capitale car elle concentre l’essentiel des émissions lors d’un cycle d’homologation : la mise en action doit donc sans cesse être optimisée pour répondre aux nouvelles contraintes réglementaires. Elle constitue donc un champ d’application de la méthodologie à la fois cohérent et pertinent. Les résultats montrent des améliorations notables concernant les CO, HC et Nox en comparaison de la méthode classique (essais en régime permanent)
The work of this thesis responds to the context of the evolution of engine depollution norms together with the increase of the clientrequirements. It proposes a complete methodology of engine calibration considering dynamic effects with the aim of an efficient control in terms of emissions and performances. The method is divided into four steps: the dynamic design of experiments generating a set of RDE (Real Driving Emissions) cycles and dynamic variations of engine parameters using low discrepancy sequences: test results are used to train a dynamical model using LSTM neural network to predict output dynamic variations(CO, HC, NOx, Exhaust flow and temperature). The trained model is used in an optimization loop to calibrate the engine parameters using a genetic algorithm. The catalyst warm-up phase is the chosen phase for the development of the method. It is the phase occuring from engine start until the catalyst is the most efficient. It is indeed the phase with the most important emissions which is coherent with the aim of the engine calibration. The results showed noticeable improvements of CO, HC and Nox reduction compared to the steady state (baseline) method
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wenzek, Didier. "Construction de réseaux de neurones". Phd thesis, Grenoble INPG, 1993. http://tel.archives-ouvertes.fr/tel-00343569.

Texto completo
Resumen
La dénomination de réseaux de neurones recouvre tout un ensemble de méthodes de calcul dont le point commun est de décrire le calcul d'une solution a un probleme comme la recherche d'un état d'équilibre par un ensemble de cellules simples inter-agissant entre elles via un réseau de connections paramétrées. L'approche usuelle, pour obtenir un réseau de neurones ayant un comportement souhaite, consiste a tester sur des exemples un réseau choisi a priori et a modifier ses paramètres de contrôle jusqu'à ce que l'on obtienne un comportement satisfaisant. La difficulté de ces méthodes est que leur succès ou leur échec reposent sur le choix d'un premier réseau et que l'on ne dispose pas de règles permettant de déduire ce choix de la structure du probleme. La motivation de cette thèse a donc été de décrire des méthodes de synthèse permettant une construction modulaire de réseaux de neurones. Aussi, cette thèse propose une classe de réseaux de neurones parmi lesquels toute spécification de la forme chercher un élément de e (fini) vérifiant la propriété p admet au moins une réalisation. En outre, les réseaux de cette classe peuvent être combines pour obtenir un réseau réalisant une combinaison des spécifications des réseaux combines
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tsopze, Norbert. "Treillis de Galois et réseaux de neurones : une approche constructive d'architecture des réseaux de neurones". Thesis, Artois, 2010. http://www.theses.fr/2010ARTO0407/document.

Texto completo
Resumen
Les réseaux de neurones artificiels connaissent des succès dans plusieurs domaines. Maisles utilisateurs des réseaux de neurones sont souvent confrontés aux problèmes de définitionde son architecture et d’interprétabilité de ses résultats. Plusieurs travaux ont essayé d’apporterune solution à ces problèmes. Pour les problèmes d’architecture, certains auteurs proposentde déduire cette architecture à partir d’un ensemble de connaissances décrivant le domaine duproblème et d’autres proposent d’ajouter de manière incrémentale les neurones à un réseauayant une taille initiale minimale. Les solutions proposées pour le problème d’interprétabilitédes résultats consistent à extraire un ensemble de règles décrivant le fonctionnement du réseau.Cette thèse contribue à la résolution de ces deux problèmes. Nous nous limitons à l’utilisationdes réseaux de neurones dans la résolution des problèmes de classification.Nous présentons dans cette thèse un état de l’art des méthodes existantes de recherche d’architecturede réseaux de neurones : une étude théorique et expérimentale est aussi faite. Decette étude, nous observons comme limites de ces méthodes la disponibilité absolue des connaissancespour construire un réseau interprétable et la construction des réseaux difficiles à interpréteren absence de connaissances. En alternative, nous proposons une méthode appelée CLANN(Concept Lattice-based Artificial Neural network) basée les treillis de Galois qui construit undemi-treillis à partir des données et déduire de ce demi-treillis l’architacture du réseau. CLANNétant limitée à la résolution des problèmes à deux classes, nous proposons MCLANN permettantd’étendre cette méthodes de recherche d’architecture des réseaux de neurones aux problèmes àplusieurs classes.Nous proposons aussi une méthode appelée ’Approche des MaxSubsets’ pour l’extractiondes règles à partir d’un réseau de neurones. La particularité de cette méthode est la possibilitéd’extraire les deux formats de règles (’si alors’ et ’m parmi N’) à partir d’une structure quenous construisons. Nous proposons aussi une façon d’expliquer le résultat calculé par le réseauconstruit par la méthode MCLANN au sujet d’un exemple
The artificial neural networks are successfully applied in many applications. But theusers are confronted with two problems : defining the architecture of the neural network able tosolve their problems and interpreting the network result. Many research works propose some solutionsabout these problems : to find out the architecture of the network, some authors proposeto use the problem domain theory and deduct the network architecture and some others proposeto dynamically add neurons in the existing networks until satisfaction. For the interpretabilityproblem, solutions consist to extract rules which describe the network behaviour after training.The contributions of this thesis concern these problems. The thesis are limited to the use of theartificial neural networks in solving the classification problem.In this thesis, we present a state of art of the existing methods of finding the neural networkarchitecture : we present a theoritical and experimental study of these methods. From this study,we observe some limits : difficulty to use some method when the knowledges are not available ;and the network is seem as ’black box’ when using other methods. We a new method calledCLANN (Concept Lattice-based Artificial Neural Network) which builds from the training dataa semi concepts lattice and translates this semi lattice into the network architecture. As CLANNis limited to the two classes problems, we propose MCLANN which extends CLANN to manyclasses problems.A new method of rules extraction called ’MaxSubsets Approach’ is also presented in thisthesis. Its particularity is the possibility of extracting the two kind of rules (If then and M-of-N)from an internal structure.We describe how to explain the MCLANN built network result aboutsome inputs
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Voegtlin, Thomas. "Réseaux de neurones et auto-référence". Lyon 2, 2002. http://theses.univ-lyon2.fr/documents/lyon2/2002/voegtlin_t.

Texto completo
Resumen
Le sujet de cette thèse est l'étude d'une classe d'algorithmes d'apprentissage non supervisés pour réseaux de neurones récurrents. Dans la 1ere partie (chap. 1 à 4), je présente plusieurs algorithmes, basés sur un même principe d'apprentissage : l'auto-référence. L'apprentissage auto-référent n'implique pas l'optimisation d'un critère objectif (comme une fonction d'erreur), mais il fait intervenir une fonction subjective, qui dépend de ce que le réseau a déjà appris. Un exemple de réseau supervisé basé sur ce principe est le Simple Recurrent Netword d'Elman (1990). Dans ce cas, l'auto-référence est appliquée à l'algorithme de rétro-propagation du gradient. Sur ce point, le réseau d'Elman diffère des autres méthodes de rétro-propagation pour réseaux récurrents, qui font intervenir un gradient objectif (Back-propagation Through Time, Real-Time Recurrent learning). Je montr que l'auto-référence peut être utilisée avec les principales techniques d'apprentissage non supervisé : Cartes de Kohonen, Analyse en composantes principales, Analyse en composantes indépendantes. Ces techniques sont classiquement utilisées pour représenter des données statiques. L'auto-référence permet de les généraliser à des séries temporelles, et de définir des algorithmes d'apprentissage nouveaux
The purpose of this thesis is to present a class of unsupervised learning algorithms for recurrent networks. In the first part (chapters 1 to 4), I propose a new approach to this question, based on a simple principle: self-reference. A self-referent algorithm is not based on the minimization of an objective criterion, such as an error function, but on a subjective function, that depends on what the network has previously learned. An example of a supervised recurrent network where learning is self-referent is the Simple Recurrent Network (SRN) by Elman (1990). In the SRN, self-reference is applied to the supervised error back-propagation algorithm. In this aspect, the SRN differs from other generalizations of back-propagation to recurrent networks, that use an objective criterion, such as Back-Propagation Through Time, or Real-Time Recurrent Learning. In this thesis, I show that self-reference can be combined with several well-known unsupervised learning methods: the Self-Organizing Map (SOM), Principal Components Analysis (PCA), and Independent Components Analysis (ICA). These techniques are classically used to represent static data. Self-reference allows one to generalize these techniques to time series, and to define unsupervised learning algorithms for recurrent networks
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Teytaud, Olivier. "Apprentissage, réseaux de neurones et applications". Lyon 2, 2001. http://theses.univ-lyon2.fr/documents/lyon2/2001/teytaud_o.

Texto completo
Resumen
Les fondements théoriques de l'apprentissage sont en grande partie posés. Comme la calculabilité est venue à maturité en s'orientant vers la complexité, l'apprentissage mûrit face à des résultats négatifs forts qui rendent sans espoir la quête d'algorithmes universels, efficaces pour toute donnée. Vraisemblablement les grandes avancées à venir seront (a) soit dans des domaines connexes où l'étude théorique a moins été poussée, (b) soit moins philosophiques et plus concrètes (théorique à préoccupations algorithmiques, représentation de données structurées, implémentation physique, modularité), soit enfin (c) dans la modélisation biologique. Cette thèse résume (et essaie modestement de compléter) les avancées théoriques statistiques, des points de vue successifs des cas où l'apprentissage est difficile (i. E. , où l'on sort du cadre iid sans bruit avec a priori de VC-dimension finie), des utilisations non-standards de la VC-théorie (non-supervisé, extraction de règles : c'est le (a) ci-dessus), puis du passage au concret avec le passage aux préoccupations algorithmiques (validité des approximations dans les Supports Vector Machines, efficacité des algorithmes de Gibbs quoique l'étude soit très incomplète, plus proches voisins rapides d'un point de vue expérimental représentation de données structurées images ou textes - tout cela est le (b)) et la modélisation biologique (c)
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Réseaux de neurones LSTM"

1

Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Personnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Amat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2a ed. Toulouse: Cépaduès-Ed., 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Journées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Seidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Suzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Biophysics of computation: Information processing in single neurons. New York: Oxford University Press, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

K, Kaczmarek Leonard, ed. The neuron: Cell and molecular biology. 3a ed. Oxford: Oxford University Press, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Réseaux de neurones LSTM"

1

Martaj, Dr Nadia y Dr Mohand Mokhtari. "Réseaux de neurones". En MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kipnis, C. y E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie". En Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

"4. Les réseaux de neurones artificiels". En L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

MOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU y Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales". En Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.

Texto completo
Resumen
Ce chapitre traite des méthodes d’analyse de séries chronologiques denses en télédétection. Il présente les principales exigences en termes de prétraitements des données, puis un aperçu des quatre principaux axes en détection de changement basée sur l'analyse de séries chronologiques denses : carte de classification, classification de trajectoire, frontières statistiques et approches d'ensemble. Il fournit aussi les détails sur deux des algorithmes les plus largement utilisés dans ce contexte d’analyse. Il aborde également la question de l'apprentissage profond pour la télédétection, en détaillant trois types d'architectures de réseau adaptées à l'analyse de séries chronologiques d'images satellitaires : les réseaux de neurones récurrents, les réseaux de neurones convolutifs et les modèles hybrides combinant ces deux derniers modèles de réseau.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

BYTYN, Andreas, René AHLSDORF y Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN". En Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.

Texto completo
Resumen
Les réseaux de neurones convolutifs (CNN) utilisés pour l’analyse des signaux vidéo sont très gourmands en calculs. De telles applications embarquées nécessitent des implémentations efficaces en termes de coût et de puissance. Ce chapitre présente une solution basée sur un processeur de jeu d’instructions spécifique à l’application (ASIP) qui représente un bon compromis entre efficacité et programmabilité.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

BENMAMMAR, Badr y Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive". En Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.

Texto completo
Resumen
Dans ce chapitre, nous nous intéressons aux techniques de l’intelligence artificielle (IA) qui ont été les plus utilisées dans les trois dernières années dans la radio cognitive (RC). Nous nous intéressons à des métaheuristiques qui n’étaient pas discutées dans les précédents travaux, comme l’algorithme des lucioles, la recherche coucou, l’algorithme de recherche gravitationnel et l’optimisation par essaim de particules. Nous présentons également les travaux récents liés à l’application des autres techniques d’IA dans la RC, à savoir les algorithmes génétiques, les algorithmes de colonies d’abeilles, la logique floue, la théorie des jeux, les réseaux de neurones, les modèles de Markov, les machines à vecteurs de support, le raisonnement à partir de cas, les arbres de décision, les réseaux bayésiens, les systèmes multi-agents et l’apprentissage par renforcement.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

COGRANNE, Rémi, Marc CHAUMONT y Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias". En Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.

Texto completo
Resumen
Ce chapitre détaille comment analyser une image numérique en vue d’obtenir des informations sur les données cachées par une méthode de stéganographie. Après une présentation des objectifs, plusieurs stratégies de détection sont ensuite détaillées, notamment les méthodes statistiques utilisant le rapport de vraisemblance, les méthodes par apprentissage reposant soit sur l’extraction de caractéristiques, soit sur l’utilisation de réseaux de neurones profonds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

ATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER y Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images". En Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.

Texto completo
Resumen
Ce chapitre étudie les capacités de généralisation d’une bibliothèque de réseaux de neurones convolutifs pour la classification d’états de surface terrestre dans le temps, avec une granularité variable sur la nature des états. L’ensemble de données utilisé pour réaliser cette étude est constitué d'images à sémantique descriptible au sens de propriétés géophysiques et des impacts des conditions météorologiques en zone de glaciers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

DE’ FAVERI TRON, Alvise. "La détection d’intrusion au moyen des réseaux de neurones : un tutoriel". En Optimisation et apprentissage, 211–47. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch8.

Texto completo
Resumen
La détection d'intrusion est un concept clé dans la sécurité. Elle vise à analyser l'état actuel d'un réseau en temps réel et à identifier les anomalies potentielles qui se produisent dans le système. Un réseau de neurones à réaction formé sur l'ensemble de données NSL-KDD a pour objectif de maximiser la précision de la reconnaissance de nouveaux échantillons de données.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

ATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN y Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives". En Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.

Texto completo
Resumen
Ce chapitre traite l'extraction d'attributs à partir d'ondelettes et de filtres ConvNet (réseaux de neurones à convolution) pour l'analyse non supervisée de séries chronologiques d'images. Nous exploitons les capacités des ondelettes et des filtres neuro-convolutifs à capturer des propriétés d'invariance non-triviales, ainsi que les nouvelles solutions de centroïdes proposées dans ce chapitre, pour l'analyse d'attributs de hauts niveaux par entropie relative. La détection d'anomalies et le clustering fonctionnel d'évolution sont développés à partir de ce cadre.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Réseaux de neurones LSTM"

1

Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens". En 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.

Texto completo
Resumen
« L’intelligence artificielle connaît un essor fulgurant depuis ces dernières années. Lapprentissage automatique et plus précisément lapprentissage profond grâce aux réseaux de neurones convolutifs ont permis des avancées majeures dans le domaine de la reconnaissance des formes. Cette présentation fait suite à mon travail de thèse. La première partie retrace lhistorique et décrit les principes de fonctionnement de ces réseaux. La seconde présente une revue de la littérature de leurs applications dans la pratique médicale de plusieurs spécialités, pour des tâches diagnostiques nécessitant une démarche visuelle (classification dimages et détection de lésions). Quinze articles, évaluant les performances de ces solutions dautomatisation, ont été analysés. La troisième partie est une discussion à propos des perspectives et des limites présentées par les réseaux de neurones convolutifs, ainsi que leurs possibles applications en chirurgie orale. »
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier y Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix". En XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

ORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez y Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples". En Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.

Texto completo
Resumen
Les avancées récentes dans le domaine de l'intelligence artificielle (IA), en particulier dans la reconnaissance d'images et le traitement du langage naturel, ouvrent de nouvelles perspectives qui vont bien au-delà de la recherche académique. L'IA, portée par ces succès populaires, repose sur des algorithmes basés sur des "réseaux de neurones" et elle se nourrit des vastes quantités d'informations accessibles sur Internet, notamment via des ressources telles que l'encyclopédie en ligne Wikipédia, la numérisation de livres et de revues, ainsi que des bibliothèques de photographies. Si l'on en croit les propres dires du programme informatique ChatGPT, son réseau de neurones compte plus de 175 millions de paramètres. Quant à notre cerveau, qui était le modèle initial de cette approche connexionniste, il compte environ 86 milliards de neurones formant un vaste réseau interconnecté... Dans ce travail, nous proposons une approche plus modeste de l'IA en nous contentant de décrire les résultats que l'on peut obtenir avec un seul neurone synthétique isolé, le modèle historique du perceptron (proposé par Frank Rosenblatt dans les années 1950). C'est un "Retour vers le futur" de l'IA qui est entrepris pour fabriquer et tester un neurone artificiel à partir de composants électroniques simples. Celui-ci doit permettre de différencier un chien d'un chat à partir de données anatomiques collectées sur ces animaux.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Walid, Tazarki, Fareh Riadh y Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]". En International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kim, Lila y Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Gendrot, Cedric, Emmanuel Ferragne y Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Quintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard y Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía