Literatura académica sobre el tema "Réseaux de neurones embarqués"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Réseaux de neurones embarqués".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Réseaux de neurones embarqués"
Jovanović, S. y S. Weber. "Modélisation et accélération de réseaux de neurones profonds (CNN) en Python/VHDL/C++ et leur vérification et test à l’aide de l’environnement Pynq sur les FPGA Xilinx". J3eA 21 (2022): 1028. http://dx.doi.org/10.1051/j3ea/20220028.
Texto completoAbdeljalil, Lamyal, Mohamed Fouad Benkoris y Mourat Aït-Ahmed. "Méthodologie de modélisation dynamique des réseaux électriques embarqués". Revue internationale de génie électrique 10, n.º 1-2 (9 de mayo de 2007): 83–115. http://dx.doi.org/10.3166/rige.10.83-115.
Texto completo-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.
Texto completo-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.
Texto completo-Y. HAGGEGE, Joseph. "Les réseaux de neurones". Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.
Texto completo-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.
Texto completo-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.
Texto completo-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.
Texto completoBélanger, M., N. El-Jabi, D. Caissie, F. Ashkar y J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple". Revue des sciences de l'eau 18, n.º 3 (12 de abril de 2005): 403–21. http://dx.doi.org/10.7202/705565ar.
Texto completoJosso-Laurain, Thomas, Rodolfo Orjuela y Alain Bolli. "Enseigner les réseaux en EEA : approche par ludification". J3eA 21 (2022): 2015. http://dx.doi.org/10.1051/j3ea/20222015.
Texto completoTesis sobre el tema "Réseaux de neurones embarqués"
Pompougnac, Hugo. "Spécification et compilation de réseaux de neurones embarqués". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS436.
Texto completoIn this thesis, we propose an approach for the joint specification and compilation of both High-Performance Computing (HPC) and Real-Time Embedded (RTE) aspects of a system. Our approach is based on a formal, algorithmic and tooled integration between two formalisms underlying a large part of works in HPC and RTE fields: the SSA formalism and the synchronous dataflow language Lustre. The SSA formalism is a key component of many HPC compilers, including those used by Machine Learning frameworks such as TensorFlow or PyTorch. The Lustre language is a key component of implementation processes of critical embedded systems in avionics or rail transportation
Fernandez, Brillet Lucas. "Réseaux de neurones CNN pour la vision embarquée". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM043.
Texto completoRecently, Convolutional Neural Networks have become the state-of-the-art soluion(SOA) to most computer vision problems. In order to achieve high accuracy rates, CNNs require a high parameter count, as well as a high number of operations. This greatly complicates the deployment of such solutions in embedded systems, which strive to reduce memory size. Indeed, while most embedded systems are typically in the range of a few KBytes of memory, CNN models from the SOA usually account for multiple MBytes, or even GBytes in model size. Throughout this thesis, multiple novel ideas allowing to ease this issue are proposed. This requires to jointly design the solution across three main axes: Application, Algorithm and Hardware.In this manuscript, the main levers allowing to tailor computational complexity of a generic CNN-based object detector are identified and studied. Since object detection requires scanning every possible location and scale across an image through a fixed-input CNN classifier, the number of operations quickly grows for high-resolution images. In order to perform object detection in an efficient way, the detection process is divided into two stages. The first stage involves a region proposal network which allows to trade-off recall for the number of operations required to perform the search, as well as the number of regions passed on to the next stage. Techniques such as bounding box regression also greatly help reduce the dimension of the search space. This in turn simplifies the second stage, since it allows to reduce the task’s complexity to the set of possible proposals. Therefore, parameter counts can greatly be reduced.Furthermore, CNNs also exhibit properties that confirm their over-dimensionment. This over-dimensionement is one of the key success factors of CNNs in practice, since it eases the optimization process by allowing a large set of equivalent solutions. However, this also greatly increases computational complexity, and therefore complicates deploying the inference stage of these algorithms on embedded systems. In order to ease this problem, we propose a CNN compression method which is based on Principal Component Analysis (PCA). PCA allows to find, for each layer of the network independently, a new representation of the set of learned filters by expressing them in a more appropriate PCA basis. This PCA basis is hierarchical, meaning that basis terms are ordered by importance, and by removing the least important basis terms, it is possible to optimally trade-off approximation error for parameter count. Through this method, it is possible to compress, for example, a ResNet-32 network by a factor of ×2 both in the number of parameters and operations with a loss of accuracy <2%. It is also shown that the proposed method is compatible with other SOA methods which exploit other CNN properties in order to reduce computational complexity, mainly pruning, winograd and quantization. Through this method, we have been able to reduce the size of a ResNet-110 from 6.88Mbytes to 370kbytes, i.e. a x19 memory gain with a 3.9 % accuracy loss.All this knowledge, is applied in order to achieve an efficient CNN-based solution for a consumer face detection scenario. The proposed solution consists of just 29.3kBytes model size. This is x65 smaller than other SOA CNN face detectors, while providing equal detection performance and lower number of operations. Our face detector is also compared to a more traditional Viola-Jones face detector, exhibiting approximately an order of magnitude faster computation, as well as the ability to scale to higher detection rates by slightly increasing computational complexity.Both networks are finally implemented in a custom embedded multiprocessor, verifying that theorical and measured gains from PCA are consistent. Furthermore, parallelizing the PCA compressed network over 8 PEs achieves a x11.68 speed-up with respect to the original network running on a single PE
Godin, Christelle. "Contributions à l'embarquabilité et à la robustesse des réseaux de neurones en environnement radiatif : apprentissage constructif : neurones à impulsions". École nationale supérieure de l'aéronautique et de l'espace (Toulouse ; 1972-2007), 2000. http://www.theses.fr/2000ESAE0013.
Texto completoMamalet, Franck. "Adéquation algorithme-architecture pour les réseaux de neurones à convolution : application à l'analyse de visages embarquée". Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0068.
Texto completoProliferation of image sensors in many electronic devices, and increasing processing capabilities of such sensors, open a field of exploration for the implementation and optimization of complex image processing algorithms in order to provide embedded vision systems. This work is a contribution in the research domain of algorithm-architecture matching. It focuses on a class of algorithms called convolution neural network (ConvNet) and its applications in embedded facial analysis. The facial analysis framework, introduced by Garcia et al., was chosen for its state of the art performances in detection/recognition, and also for its homogeneity based on ConvNets. The first contribution of this work deals with an adequacy study of this facial analysis framework with embedded processors. We propose several algorithmic adaptations of ConvNets, and show that they can lead to significant speedup factors (up to 700) on an embedded processor for mobile phone, without performance degradation. We then present a study of ConvNets parallelization capabilities, through N. Farrugia's PhD work. A coarse-grain parallelism exploration of ConvNets, followed by study of internal scheduling of elementary processors, lead to a parameterized parallel architecture on FPGA, able to detect faces at more than 10 VGA frames per second. Finally, we propose an extension of these studies to the learning phase of neural networks. We analyze several hypothesis space restrictions for ConvNets, and show, on a case study, that classification rate performances are almost the same with a training time divided by up to five
Abderrahmane, Nassim. "Impact du codage impulsionnel sur l’efficacité énergétique des architectures neuromorphiques". Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4082.
Texto completoNowadays, Artificial Intelligence (AI) is a widespread concept applied to many fields such as transportation, medicine and autonomous vehicles. The main AI algorithms are artificial neural networks, which can be divided into two families: Spiking Neural Networks (SNNs), which are bio-inspired models resulting from neuroscience, and Analog Neural Networks (ANNs), which result from machine learning. The ANNs are experiencing unprecedented success in research and industrial fields, due to their recent successes in many application contexts such as image classification and object recognition. However, they require considerable computational capacity for their deployment which is not adequate to very constrained systems such as 'embedded systems'. To overcome these limitations, many researchers are interested in brain-inspired computing, which would be the perfect alternative to conventional computers based on the Von Neumann architecture (CPU/GPU). This paradigm meets computing performance but not energy efficiency requirements. Hence, it is necessary to design neuromorphic hardware circuits adaptable to parallel and distributed computing. In this context, we have set criteria in terms of accuracy and hardware implementation cost to differentiate the two neural families (SNNs and ANNs). In the case of simple network topologies, we conducted a study that has shown that the spiking models have significant gains in terms of hardware cost when compared to the analog networks, with almost similar prediction accuracies. Therefore, the objective of this thesis is to design a generic neuromorphic architecture that is based on spiking neural networks. To this end, we have set up a three-level design flow for exploring and implementing neuromorphic architectures.In an energy efficiency context, a thorough exploration of different neural coding paradigms for neural data representation in SNNs has been carried out. Moreover, new derivative versions of rate-based coding have been proposed that aim to get closer to the activity produced by temporal coding, which is characterized by a reduced number of spikes propagating in the network. In this way, the number of spikes can be reduced so that the number of events to be processed in the SNNs gets smaller. The aim in doing this approach is to reduce the hardware architecture's energy consumption. The proposed coding approaches are: First Spike, which is characterized using at most one single spike to present an input data, and Spike Select, which allows to regulate and minimize the overall spiking activity in the SNN.In the RTL design exploration, we quantitatively compared three SNN architectural models having different levels of computing parallelism and multiplexing. Using Spike Select coding results in a distribution regulation of the spiking data, with most of them generated within the first layer and few of them propagate into the deep layers. Such distribution benefits from a so-called 'hybrid architecture' that includes a fully-parallel part for the first layer and multiplexed parts to the other layers. Therefore, combining the Spike Select and the Hybrid Architecture would be an effective solution for embedded AI applications, with an efficient hardware and latency trade-off.Finally, based on the architectural and neural choices resulting from the previous exploration, we have designed a final event-based architecture dedicated to SNNs supporting different neural network types and sizes. The architecture supports the most used layers: convolutional, pooling and fully-connected. Using this architecture, we will be able to compare analog and spiking neural networks on realistic applications and to finally conclude about the use of SNNs for Embedded Artificial Intelligence
Boukli, Hacene Ghouthi. "Processing and learning deep neural networks on chip". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0153/document.
Texto completoIn the field of machine learning, deep neural networks have become the inescapablereference for a very large number of problems. These systems are made of an assembly of layers,performing elementary operations, and using a large number of tunable variables. Using dataavailable during a learning phase, these variables are adjusted such that the neural networkaddresses the given task. It is then possible to process new data.To achieve state-of-the-art performance, in many cases these methods rely on a very largenumber of parameters, and thus large memory and computational costs. Therefore, they are oftennot very adapted to a hardware implementation on constrained resources systems. Moreover, thelearning process requires to reuse the training data several times, making it difficult to adapt toscenarios where new information appears on the fly.In this thesis, we are first interested in methods allowing to reduce the impact of computations andmemory required by deep neural networks. Secondly, we propose techniques for learning on thefly, in an embedded context
Pinna, Andrea. "Conception d'une rétine connexionniste : du capteur au système de vision sur puce". Paris 6, 2003. http://www.theses.fr/2003PA066566.
Texto completoVeniat, Tom. "Neural Architecture Search under Budget Constraints". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS443.
Texto completoThe recent increase in computation power and the ever-growing amount of data available ignited the rise in popularity of deep learning. However, the expertise, the amount of data, and the computing power necessary to build such algorithms as well as the memory footprint and the inference latency of the resulting system are all obstacles preventing the widespread use of these methods. In this thesis, we propose several methods allowing to make a step towards a more efficient and automated procedure to build deep learning models. First, we focus on learning an efficient architecture for image processing problems. We propose a new model in which we can guide the architecture learning procedure by specifying a fixed budget and cost function. Then, we consider the problem of sequence classification, where a model can be even more efficient by dynamically adapting its size to the complexity of the signal to come. We show that both approaches result in significant budget savings. Finally, we tackle the efficiency problem through the lens of transfer learning. Arguing that a learning procedure can be made even more efficient if, instead of starting tabula rasa, it builds on knowledge acquired during previous experiences. We explore modular architectures in the continual learning scenario and present a new benchmark allowing a fine-grained evaluation of different kinds of transfer
Osman, Ousama. "Méthodes de diagnostic en ligne, embarqué et distribué dans les réseaux filaires complexes". Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC038.
Texto completoThe research conducted in this thesis focuses on the diagnosis of complex wired networks using distributed reflectometry. It aims to develop new distributed diagnostic techniques for complex networks that allow data fusion as well as communication between reflectometers to detect, locate and characterize electrical faults (soft and hard faults). This collaboration between reflectometers solves the problem of fault location ambiguity and improves the quality of diagnosis. The first contribution is the development of a graph theory-based method for combining data between distributed reflectometers, thus facilitating the location of the fault. Then, the amplitude of the reflected signal is used to identify the type of fault and estimate its impedance. The latter is based on the regeneration of the signal by compensating for the degradation suffered by the diagnosis signal during its propagation through the network. The second contribution enables data fusion between distributed reflectometers in complex networks affected by multiple faults. To achieve this objective, two methods have been proposed and developed: the first is based on genetic algorithms (GA) and the second is based on neural networks (RN). These tools combined with distributed reflectometryallow automatic detection, location, and characterization of several faults in different types and topologies of wired networks. The third contribution proposes the use of information-carrying diagnosis signal to integrate communication between distributed reflectometers. It properly uses the phases of the MCTDR multi-carrier signal to transmit data. This communication ensures the exchange of useful information (such as fault location and amplitude) between reflectometers on the state of the cables, thus enabling data fusion and unambiguous fault location. Interference problems between the reflectometers are also addressed when they simultaneously inject their test signals into the network. These studies illustrate the efficiency and applicability of the proposed methods. They also demonstrate their potential to improve the performance of the current wired diagnosis systems to meet the need and the problem of detecting and locating faults that manufacturers and users face today in electrical systems to improve their operational safety
Castellanos, SÁnchez Claudio. "Modèle connexionniste neuromimétique pour la perception visuelle embarquée du mouvement". Phd thesis, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011483.
Texto completoLe modèle connexionniste proposé pour la perception visuelle du mouvement est constitué de trois modules : le premier opère un filtrage spatio-temporel causal issu des filtres de Gabor et inspiré des réponses des cellules simples du cortex visuel primaire, V1. Le deuxième met en place un mécanisme distribué de fortes interactions localisées fondé sur un principe antagoniste inspiré de l'organisation en colonnes d'orientation dans V1. Finalement, en nous inspirant des propriétés des champs récepteurs des neurones de MT et MST (aire temporelle moyenne et supérieur moyenne, respectivement), nous intégrons les réponses du second module et les envoyons au troisième. Ce dernier fait émerger un seul objet en mouvement à travers l'évolution en différentes cartes des interactions latérales, en pro-action et en retro-action d'une population neuronale densément interconnectée selon le principe de la CNFT (Continuum Neural Field Theory). L'attention sur l'objet émergé nous permet donc de le suivre.
Libros sobre el tema "Réseaux de neurones embarqués"
Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.
Buscar texto completoKamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.
Buscar texto completoRollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.
Buscar texto completoPersonnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.
Buscar texto completoAmat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2a ed. Toulouse: Cépaduès-Ed., 2002.
Buscar texto completoJournées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.
Buscar texto completoSeidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.
Buscar texto completoSuzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.
Buscar texto completoBiophysics of computation: Information processing in single neurons. New York: Oxford University Press, 1999.
Buscar texto completoK, Kaczmarek Leonard, ed. The neuron: Cell and molecular biology. 3a ed. Oxford: Oxford University Press, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Réseaux de neurones embarqués"
Martaj, Dr Nadia y Dr Mohand Mokhtari. "Réseaux de neurones". En MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.
Texto completoKipnis, C. y E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie". En Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.
Texto completoBYTYN, Andreas, René AHLSDORF y Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN". En Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Texto completo"4. Les réseaux de neurones artificiels". En L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.
Texto completoMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU y Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales". En Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Texto completoBENMAMMAR, Badr y Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive". En Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.
Texto completoCOGRANNE, Rémi, Marc CHAUMONT y Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias". En Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.
Texto completoATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER y Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images". En Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Texto completoDE’ FAVERI TRON, Alvise. "La détection d’intrusion au moyen des réseaux de neurones : un tutoriel". En Optimisation et apprentissage, 211–47. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch8.
Texto completoATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN y Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives". En Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.
Texto completoActas de conferencias sobre el tema "Réseaux de neurones embarqués"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens". En 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Texto completoGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier y Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix". En XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Texto completoORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez y Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples". En Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Texto completoWalid, Tazarki, Fareh Riadh y Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]". En International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.
Texto completoKim, Lila y Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Texto completoGendrot, Cedric, Emmanuel Ferragne y Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Texto completoQuintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard y Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.
Texto completo