Índice
Literatura académica sobre el tema "Réseau de neurone a valeurs complexes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Réseau de neurone a valeurs complexes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Réseau de neurone a valeurs complexes"
Lek, S., I. Dimopoulos, M. Derraz y Y. El Ghachtoul. "Modélisation de la relation pluie-débit à l'aide des réseaux de neurones artificiels". Revue des sciences de l'eau 9, n.º 3 (12 de abril de 2005): 319–31. http://dx.doi.org/10.7202/705255ar.
Texto completoMichael, RALIJAONA Ahazia, RAKOTOVAO Ndimbinarimalala Philémon, RALIJAONA Mbolahasina Soanandrianina y RATIARISON Adolphe Andriamanga. "Simulation Numérique De La Propagation Des Vagues Franchissant Un Obstacle Et Modélisation Des Résultats Obtenus Par Réseau De Neurones Et Neuro-Flou". International Journal of Progressive Sciences and Technologies 34, n.º 2 (5 de octubre de 2022): 15. http://dx.doi.org/10.52155/ijpsat.v34.2.4610.
Texto completoLaïdi, Maamar y Salah Hanini. "Approche neuronale pour l’estimation des transferts thermiques dans un fluide frigoporteur diphasique". Journal of Renewable Energies 15, n.º 3 (23 de octubre de 2023): 513–20. http://dx.doi.org/10.54966/jreen.v15i3.340.
Texto completoLarocque, M. y O. Banton. "Gestion de la contamination des eaux souterraines par les fertilisants agricoles: application du modèle AgriFlux". Revue des sciences de l'eau 8, n.º 1 (12 de abril de 2005): 3–20. http://dx.doi.org/10.7202/705210ar.
Texto completoRenier, Janine. "Crises systémiques : Effondrement ? Ou méta-morphose vers la grande transition ?" Acta Europeana Systemica 8 (10 de julio de 2020): 285–300. http://dx.doi.org/10.14428/aes.v8i1.56463.
Texto completoTesis sobre el tema "Réseau de neurone a valeurs complexes"
Barrachina, Jose Agustin. "Complex-valued neural networks for radar applications". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG094.
Texto completoRadar signal and SAR image processing generally require complex-valued representations and operations, e.g., Fourier, wavelet transforms, Wiener, matched filters, etc. However, the vast majority of architectures for deep learning are currently based on real-valued operations, which restrict their ability to learn from complex-valued features. Despite the emergence of Complex-Valued Neural Networks (CVNNs), their application on radar and SAR still lacks study on their relevance and efficiency. And the comparison against an equivalent Real-Valued Neural Network (RVNN) is usually biased.In this thesis, we propose to investigate the merits of CVNNs for classifying complex-valued data. We show that CVNNs achieve better performance than their real-valued counterpart for classifying non-circular Gaussian data. We also define a criterion of equivalence between feed-forward fully connected and convolutional CVNNs and RVNNs in terms of trainable parameters while keeping a similar architecture. We statistically compare the performance of equivalent Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Fully Convolutional Neural Networks (FCNNs) for polarimetric SAR image segmentation. SAR image splitting and balancing classes are also studied to avoid learning biases. In parallel, we also proposed an open-source toolbox to facilitate the implementation of CVNNs and the comparison with real-equivalent networks
Kazhuthuveettil, Sreedharan Jithin. "Échantillonnage et inférence dans réseaux complexes". Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4121/document.
Texto completoThe recent emergence of large networks, mainly due to the rise of online social networks, brought out the difficulty to gather a complete picture of a network and it prompted the development of new distributed techniques. In this thesis, we design and analyze algorithms based on random walks and diffusion for sampling, estimation and inference of the network functions, and for approximating the spectrum of graph matrices. The thesis starts with the classical problem of finding the dominant eigenvalues and the eigenvectors of symmetric graph matrices like Laplacian of undirected graphs. Using the fact that the eigenspectrum is associated with a Schrödinger-type differential equation, we develop scalable techniques with diffusion over the graph and with gossiping algorithms. They are also adaptable to a simple algorithm based on quantum computing. Next, we consider sampling and estimation of network functions (sum and average) using random walks on graph. In order to avoid the burn-in time of random walks, with the idea of regeneration at its revisits to a fixed node, we develop an estimator for the aggregate function which is non-asymptotically unbiased and derive an approximation to its Bayesian posterior. An estimator based on reinforcement learning is also developed making use of regeneration. The final part of the thesis deals with the use of extreme value theory to make inference from the stationary samples of the random walks. Extremal events such as first hitting time of a large degree node, order statistics and mean cluster size are well captured in the parameter “extremal index”. We theoretically study and estimate extremal index of different random walk sampling techniques
Zhou, Rongyan. "Exploration of opportunities and challenges brought by Industry 4.0 to the global supply chains and the macroeconomy by integrating Artificial Intelligence and more traditional methods". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST037.
Texto completoIndustry 4.0 is a significant shift and a tremendous challenge for every industrial segment, especially for the manufacturing industry that gave birth to the new industrial revolution. The research first uses literature analysis to sort out the literature, and focuses on the use of “core literature extension method” to enumerate the development direction and application status of different fields, which devotes to showing a leading role for theory and practice of industry 4.0. The research then explores the main trend of multi-tier supply in Industry 4.0 by combining machine learning and traditional methods. Next, the research investigates the relationship of industry 4.0 investment and employment to look into the inter-regional dependence of industry 4.0 so as to present a reasonable clustering based on different criteria and make suggestions and analysis of the global supply chain for enterprises and organizations. Furthermore, our analysis system takes a glance at the macroeconomy. The combination of natural language processing in machine learning to classify research topics and traditional literature review to investigate the multi-tier supply chain significantly improves the study's objectivity and lays a solid foundation for further research. Using complex networks and econometrics to analyze the global supply chain and macroeconomic issues enriches the research methodology at the macro and policy level. This research provides analysis and references to researchers, decision-makers, and companies for their strategic decision-making