Artículos de revistas sobre el tema "Renal progenitors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Renal progenitors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hasegawa, Sho, Tetsuhiro Tanaka y Masaomi Nangaku. "Recent advances in renal regeneration". F1000Research 8 (25 de febrero de 2019): 216. http://dx.doi.org/10.12688/f1000research.17127.1.
Texto completoAl-Marsoummi, Sarmad, Aaron A. Mehus, Swojani Shrestha, Rayna Rice, Brooke Rossow, Seema Somji, Scott H. Garrett y Donald A. Sens. "Proteasomes Are Critical for Maintenance of CD133+CD24+ Kidney Progenitor Cells". International Journal of Molecular Sciences 24, n.º 17 (27 de agosto de 2023): 13303. http://dx.doi.org/10.3390/ijms241713303.
Texto completoHolmes, David. "Budding renal progenitors". Nature Reviews Nephrology 10, n.º 1 (3 de diciembre de 2013): 4. http://dx.doi.org/10.1038/nrneph.2013.245.
Texto completoSequeira-Lopez, Maria Luisa S., Eugene E. Lin, Minghong Li, Yan Hu, Curt D. Sigmund y R. Ariel Gomez. "The earliest metanephric arteriolar progenitors and their role in kidney vascular development". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 308, n.º 2 (15 de enero de 2015): R138—R149. http://dx.doi.org/10.1152/ajpregu.00428.2014.
Texto completoPeired, Anna Julie, Maria Elena Melica, Alice Molli, Cosimo Nardi, Paola Romagnani y Laura Lasagni. "Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle?" Cells 10, n.º 1 (2 de enero de 2021): 59. http://dx.doi.org/10.3390/cells10010059.
Texto completoPhua, Yu Leng, Kevin Hong Chen, Shelby L. Hemker, April K. Marrone, Andrew J. Bodnar, Xiaoning Liu, Andrew Clugston, Dennis Kostka, Michael B. Butterworth y Jacqueline Ho. "Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors". American Journal of Physiology-Renal Physiology 316, n.º 5 (1 de mayo de 2019): F993—F1005. http://dx.doi.org/10.1152/ajprenal.00450.2018.
Texto completoVolovelsky, Oded, Thi Nguyen, Alison E. Jarmas, Alexander N. Combes, Sean B. Wilson, Melissa H. Little, David P. Witte, Eric W. Brunskill y Raphael Kopan. "Hamartin regulates cessation of mouse nephrogenesis independently of Mtor". Proceedings of the National Academy of Sciences 115, n.º 23 (21 de mayo de 2018): 5998–6003. http://dx.doi.org/10.1073/pnas.1712955115.
Texto completoPeired, Anna Julie, Giulia Antonelli, Maria Lucia Angelotti, Marco Allinovi, Francesco Guzzi, Alessandro Sisti, Roberto Semeraro et al. "Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells". Science Translational Medicine 12, n.º 536 (25 de marzo de 2020): eaaw6003. http://dx.doi.org/10.1126/scitranslmed.aaw6003.
Texto completoRymer, Christopher, Jose Paredes, Kimmo Halt, Caitlin Schaefer, John Wiersch, Guangfeng Zhang, Douglas Potoka et al. "Renal blood flow and oxygenation drive nephron progenitor differentiation". American Journal of Physiology-Renal Physiology 307, n.º 3 (1 de agosto de 2014): F337—F345. http://dx.doi.org/10.1152/ajprenal.00208.2014.
Texto completoChu, Jessica Y. S., Sunder Sims-Lucas, Daniel S. Bushnell, Andrew J. Bodnar, Jordan A. Kreidberg y Jacqueline Ho. "Dicer function is required in the metanephric mesenchyme for early kidney development". American Journal of Physiology-Renal Physiology 306, n.º 7 (1 de abril de 2014): F764—F772. http://dx.doi.org/10.1152/ajprenal.00426.2013.
Texto completoMeyer-Schwesinger, Catherine. "The Role of Renal Progenitors in Renal Regeneration". Nephron 132, n.º 2 (2016): 101–9. http://dx.doi.org/10.1159/000442180.
Texto completoGupta, Ashwani Kumar, David Z. Ivancic, Bilal A. Naved, Jason A. Wertheim y Leif Oxburgh. "An efficient method to generate kidney organoids at the air-liquid interface". Journal of Biological Methods 8, n.º 2 (29 de junio de 2021): e150. http://dx.doi.org/10.14440/jbm.2021.357.
Texto completoBussolati, Benedetta, Aldo Moggio, Federica Collino, Giulia Aghemo, Giuseppe D'Armento, Cristina Grange y Giovanni Camussi. "Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance". American Journal of Physiology-Renal Physiology 302, n.º 1 (1 de enero de 2012): F116—F128. http://dx.doi.org/10.1152/ajprenal.00184.2011.
Texto completoTanigawa, Shunsuke y Alan O. Perantoni. "Modeling renal progenitors – defining the niche". Differentiation 91, n.º 4-5 (abril de 2016): 152–58. http://dx.doi.org/10.1016/j.diff.2016.01.007.
Texto completoSchrankl, Julia, Bjoern Neubauer, Michaela Fuchs, Katharina Gerl, Charlotte Wagner y Armin Kurtz. "Apparently normal kidney development in mice with conditional disruption of ANG II-AT1 receptor genes in FoxD1-positive stroma cell precursors". American Journal of Physiology-Renal Physiology 316, n.º 6 (1 de junio de 2019): F1191—F1200. http://dx.doi.org/10.1152/ajprenal.00305.2018.
Texto completoRossbach, Bella, Krithika Hariharan, Nancy Mah, Su-Jun Oh, Hans-Dieter Volk, Petra Reinke y Andreas Kurtz. "Human iPSC-Derived Renal Cells Change Their Immunogenic Properties during Maturation: Implications for Regenerative Therapies". Cells 11, n.º 8 (13 de abril de 2022): 1328. http://dx.doi.org/10.3390/cells11081328.
Texto completoTakahashi, Takamune, Keiko Takahashi, Sebastian Gerety, Hai Wang, David J. Anderson y Thomas O. Daniel. "Temporally Compartmentalized Expression of Ephrin-B2 during Renal Glomerular Development". Journal of the American Society of Nephrology 12, n.º 12 (diciembre de 2001): 2673–82. http://dx.doi.org/10.1681/asn.v12122673.
Texto completoLazzeri, Elena, Clara Crescioli, Elisa Ronconi, Benedetta Mazzinghi, Costanza Sagrinati, Giuseppe Stefano Netti, Maria Lucia Angelotti et al. "Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure". Journal of the American Society of Nephrology 18, n.º 12 (31 de octubre de 2007): 3128–38. http://dx.doi.org/10.1681/asn.2007020210.
Texto completoBussolati, Benedetta, Alessia Brossa y Giovanni Camussi. "Resident Stem Cells and Renal Carcinoma". International Journal of Nephrology 2011 (2011): 1–6. http://dx.doi.org/10.4061/2011/286985.
Texto completoTan, Zenglai, Aleksandra Rak-Raszewska, Ilya Skovorodkin y Seppo J. Vainio. "Mouse Embryonic Stem Cell-Derived Ureteric Bud Progenitors Induce Nephrogenesis". Cells 9, n.º 2 (31 de enero de 2020): 329. http://dx.doi.org/10.3390/cells9020329.
Texto completoLindström, Nils O., Jinjin Guo, Albert D. Kim, Tracy Tran, Qiuyu Guo, Guilherme De Sena Brandine, Andrew Ransick et al. "Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney". Journal of the American Society of Nephrology 29, n.º 3 (15 de febrero de 2018): 806–24. http://dx.doi.org/10.1681/asn.2017080890.
Texto completoDessypris, E., SE Graber, SB Krantz y WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo". Blood 72, n.º 6 (1 de diciembre de 1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.2060.
Texto completoDessypris, E., SE Graber, SB Krantz y WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo". Blood 72, n.º 6 (1 de diciembre de 1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.bloodjournal7262060.
Texto completoChambers, Brooke E. y Rebecca A. Wingert. "Renal progenitors: Roles in kidney disease and regeneration". World Journal of Stem Cells 8, n.º 11 (2016): 367. http://dx.doi.org/10.4252/wjsc.v8.i11.367.
Texto completoRonconi, Elisa, Costanza Sagrinati, Maria Lucia Angelotti, Elena Lazzeri, Benedetta Mazzinghi, Lara Ballerini, Eliana Parente et al. "Regeneration of Glomerular Podocytes by Human Renal Progenitors". Journal of the American Society of Nephrology 20, n.º 2 (17 de diciembre de 2008): 322–32. http://dx.doi.org/10.1681/asn.2008070709.
Texto completoRomagnani, Paola y Giuseppe Remuzzi. "Renal progenitors in non-diabetic and diabetic nephropathies". Trends in Endocrinology & Metabolism 24, n.º 1 (enero de 2013): 13–20. http://dx.doi.org/10.1016/j.tem.2012.09.002.
Texto completoBecherucci, Francesca, Elena Lazzeri, Laura Lasagni y Paola Romagnani. "Renal progenitors and childhood: from development to disorders". Pediatric Nephrology 29, n.º 4 (4 de enero de 2014): 711–19. http://dx.doi.org/10.1007/s00467-013-2686-2.
Texto completoSheybani-Deloui, Sepideh, Lijun Chi, Marian V. Staite, Jason E. Cain, Brian J. Nieman, R. Mark Henkelman, Brandon J. Wainwright et al. "Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction". Journal of the American Society of Nephrology 29, n.º 2 (6 de noviembre de 2017): 532–44. http://dx.doi.org/10.1681/asn.2017050482.
Texto completoDionne, Lai Kuan, Kyuhwan Shim, Masato Hoshi, Tao Cheng, Jinzhi Wang, Veronique Marthiens, Amanda Knoten, Renata Basto, Sanjay Jain y Moe R. Mahjoub. "Centrosome amplification disrupts renal development and causes cystogenesis". Journal of Cell Biology 217, n.º 7 (12 de junio de 2018): 2485–501. http://dx.doi.org/10.1083/jcb.201710019.
Texto completoVinsonneau, C., A. Girshovich, M. Ben M'rad, J. Perez, L. Mesnard, S. Vandermersch, S. Placier, E. Letavernier, L. Baud y J. P. Haymann. "Intrarenal urothelium proliferation: an unexpected early event following ischemic injury". American Journal of Physiology-Renal Physiology 299, n.º 3 (septiembre de 2010): F479—F486. http://dx.doi.org/10.1152/ajprenal.00585.2009.
Texto completoNag, Sparshita y Ashleigh S. Boyd. "Decellularization of Mouse Kidneys to Generate an Extracellular Matrix Gel for Human Induced Pluripotent Stem Cell Derived Renal Organoids". Organoids 2, n.º 1 (22 de marzo de 2023): 66–78. http://dx.doi.org/10.3390/organoids2010005.
Texto completoDrummond, Bridgette E., Brooke E. Chambers, Hannah M. Wesselman, Shannon Gibson, Liana Arceri, Marisa N. Ulrich, Gary F. Gerlach et al. "osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2". Biomedicines 10, n.º 11 (9 de noviembre de 2022): 2868. http://dx.doi.org/10.3390/biomedicines10112868.
Texto completoUrbach, A., A. Yermalovich, J. Zhang, C. S. Spina, H. Zhu, A. R. Perez-Atayde, R. Shukrun et al. "Lin28 sustains early renal progenitors and induces Wilms tumor". Genes & Development 28, n.º 9 (14 de abril de 2014): 971–82. http://dx.doi.org/10.1101/gad.237149.113.
Texto completoRomagnani, Paola, Laura Lasagni y Giuseppe Remuzzi. "Renal progenitors: an evolutionary conserved strategy for kidney regeneration". Nature Reviews Nephrology 9, n.º 3 (22 de enero de 2013): 137–46. http://dx.doi.org/10.1038/nrneph.2012.290.
Texto completoBarasch, J., J. Yang y K. Mori. "INDUCTION OF NEPHRONS FROM RENAL PROGENITORS BY MULTIPLE SIGNALS". ASAIO Journal 49, n.º 2 (marzo de 2003): 198. http://dx.doi.org/10.1097/00002480-200303000-00230.
Texto completoBarak, Y., L. Sinai-Treiman, Y. Karov, A. Abrahamov y A. Drukker. "Hematopoietic Progenitors in Children with End-Stage Renal Disease". Pediatric Hematology and Oncology 11, n.º 6 (enero de 1994): 633–39. http://dx.doi.org/10.3109/08880019409141810.
Texto completoWang, Honghe, Yili Yang, Nirmala Sharma, Nadya I. Tarasova, Olga A. Timofeeva, Robin T. Winkler-Pickett, Shunsuke Tanigawa y Alan O. Perantoni. "STAT1 activation regulates proliferation and differentiation of renal progenitors". Cellular Signalling 22, n.º 11 (noviembre de 2010): 1717–26. http://dx.doi.org/10.1016/j.cellsig.2010.06.012.
Texto completoOsafune, Kenji. "iPSC technology-based regenerative medicine for kidney diseases". Clinical and Experimental Nephrology 25, n.º 6 (3 de marzo de 2021): 574–84. http://dx.doi.org/10.1007/s10157-021-02030-x.
Texto completoJackson, Ashley R., Monica L. Hoff, Birong Li, Christina B. Ching, Kirk M. McHugh y Brian Becknell. "Krt5+ urothelial cells are developmental and tissue repair progenitors in the kidney". American Journal of Physiology-Renal Physiology 317, n.º 3 (1 de septiembre de 2019): F757—F766. http://dx.doi.org/10.1152/ajprenal.00171.2019.
Texto completoDe Filippo, Roger E., Ilenia Zanusso, Stefano Da Sacco, Scott Leslie, Astgik Petrosyan, Kevin V. Lemley y Laura Perin. "Amniotic fluid renal progenitors and renal extracellular matrix: a new approach for kidney regeneration". Journal of the American College of Surgeons 219, n.º 4 (octubre de 2014): e55. http://dx.doi.org/10.1016/j.jamcollsurg.2014.07.531.
Texto completoYosypiv, Ihor V., Maria Luisa S. Sequeira-Lopez, Renfang Song y Alexandre De Goes Martini. "Stromal prorenin receptor is critical for normal kidney development". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 316, n.º 5 (1 de mayo de 2019): R640—R650. http://dx.doi.org/10.1152/ajpregu.00320.2018.
Texto completoAtala, Anthony. "Re: Lin28 Sustains Early Renal Progenitors and Induces Wilms Tumor". Journal of Urology 193, n.º 2 (febrero de 2015): 730–31. http://dx.doi.org/10.1016/j.juro.2014.11.021.
Texto completoFranzin, Rossana, Alessandra Stasi, Giuseppe De Palma, Angela Picerno, Claudia Curci, Serena Sebastiano, Monica Campioni et al. "Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles". Cells 12, n.º 12 (17 de junio de 2023): 1655. http://dx.doi.org/10.3390/cells12121655.
Texto completoChan, Charles, Ching-Cheng Chen, Daniel L. Kraft, Cynthia Luppen, Jae-Beom Kim, Anthony DeBoer, Kevin Wei Wei y Irving L. Weissman. "Identification and Isolation of the Hematopoietic Stem Cell Niche Initiating Cell Population". Blood 112, n.º 11 (16 de noviembre de 2008): 3574. http://dx.doi.org/10.1182/blood.v112.11.3574.3574.
Texto completoMukherjee, Elina, Katherine Maringer, Emily Papke, Daniel Bushnell, Caitlin Schaefer, Rafael Kramann, Jacqueline Ho, Benjamin D. Humphreys, Carlton Bates y Sunder Sims-Lucas. "Endothelial marker-expressing stromal cells are critical for kidney formation". American Journal of Physiology-Renal Physiology 313, n.º 3 (1 de septiembre de 2017): F611—F620. http://dx.doi.org/10.1152/ajprenal.00136.2017.
Texto completoBombelli, Silvia, Chiara Meregalli, Chiara Grasselli, Maddalena M. Bolognesi, Antonino Bruno, Stefano Eriani, Barbara Torsello et al. "PKHhigh/CD133+/CD24− Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency". Cells 9, n.º 8 (29 de julio de 2020): 1805. http://dx.doi.org/10.3390/cells9081805.
Texto completoNamdarian, Benjamin, Kevin V. S. Tan, Matthew J. Fankhauser, Thanh T. Nguyen, Niall M. Corcoran, Anthony J. Costello y Christopher M. Hovens. "Circulating endothelial cells and progenitors: potential biomarkers of renal cell carcinoma". BJU International 106, n.º 7 (14 de septiembre de 2010): 1081–87. http://dx.doi.org/10.1111/j.1464-410x.2010.09245.x.
Texto completoDolt, Karamjit Singh, David Edgar, Simon Kenny y Patricia Murray. "14-P007 Differentiation of human embryonic stem cells towards renal progenitors". Mechanisms of Development 126 (agosto de 2009): S241. http://dx.doi.org/10.1016/j.mod.2009.06.626.
Texto completoBecherucci, Francesca, Benedetta Mazzinghi, Marco Allinovi, Maria Lucia Angelotti y Paola Romagnani. "Regenerating the kidney using human pluripotent stem cells and renal progenitors". Expert Opinion on Biological Therapy 18, n.º 7 (3 de julio de 2018): 795–806. http://dx.doi.org/10.1080/14712598.2018.1492546.
Texto completoZhang, Jiong, Jeffrey W. Pippin, Ronald D. Krofft, Shokichi Naito, Zhi-Hong Liu y Stuart J. Shankland. "Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS". American Journal of Physiology-Renal Physiology 304, n.º 11 (1 de junio de 2013): F1375—F1389. http://dx.doi.org/10.1152/ajprenal.00020.2013.
Texto completo