Tesis sobre el tema "Remote sensing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Remote sensing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Abdelsaid, Sherif H. Kamal. "Matching remote sensing images". Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9560.
Texto completoBudgett, David Mortimer. "Remote sensing of the epicardium". Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363025.
Texto completoLemos, Pinto J. de. "Remote sensing in refractive turbulence". Thesis, University of Hull, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381887.
Texto completoSayer, Andrew Mark. "Aerosol Remote Sensing Using AATSR". Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526115.
Texto completoLavender, Samantha Jane. "Remote sensing of suspended sediment". Thesis, University of Plymouth, 1996. http://hdl.handle.net/10026.1/2119.
Texto completoJago, Rosemary Alison. "Remote sensing of contaminated land". Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243094.
Texto completoDe, Michele Marcello. "Remote sensing observations of seismotectonics". Paris 6, 2010. http://www.theses.fr/2010PA066647.
Texto completoCharlton, Fergus. "Remote sensing of freshwater phytoplankton". Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/21140.
Texto completoQi, Jiaguo. "Compositing multitemporal remote sensing data". Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186327.
Texto completoHick, Peter T. "Remote sensing of agricultural salinity". Thesis, Curtin University, 1987. http://hdl.handle.net/20.500.11937/877.
Texto completoHick, Peter T. "Remote sensing of agricultural salinity". Curtin University of Technology, Department of Environmental Biology, 1987. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=10930.
Texto completoabsorption.The study evaluated the spatial and spectral characteristics of existing satellite systems such as Thematic Mapper and the Multispectral Scanner on the Landsat series and determined that a spatial resolution of about 20-30 metres was most appropriate for detection of salinity at a scale whereby management could be implemented.Ground electromagnetic techniques were evaluated during the study and the EM-38 Ground Conductivity Unit proved valuable for characterizing salinity status of the sites. The Lowtran Computer Code was used to model atmospheric attenuation and results indicated that the positioning of a narrow shortwave infrared waveband, centred at 1985 nm, is possible.
Lopatin, Anton. "Enhanced remote sensing of atmospheric aerosol by joint inversion of active and passive remote sensing observations". Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10141/document.
Texto completoThis thesis presents the GARRLiC algorithm (Generalized Aerosol Retrieval from Ra- diometer and Lidar Combined data) that simultaneously inverts co-incident lidar and sun-photometer observations and derives a united set of aerosol parameters that describe both columnar and vertical aerosol properties. GARRLiC searches for the best fit of the multi-source measurements together with a priori constraints on aerosol characteristics through the continuous space of all possi- ble solutions under statistically formulated criteria. It retrieves height independent size distribution, complex refractive index and fraction of spherical particles together with vertically resolved aerosol concentration, all differentiated between fine and coarse aerosol modes. The potential and limitations of the method are demonstrated by sensitivity tests. The tests showed that the complete set of aerosol parameters for each aerosol component can be robustly derived with acceptable accuracy in all considered situations. Limited sen- sitivity to the properties of the fine mode and dependence of retrieval accuracy on the aerosol optical thickness for both modes were found. It was shown that sensitivity to fine mode refractive index could be improved by accounting for polarization data provided by passive instruments. The effects of the presence of lidar data and random noise on aerosol retrievals were studied. The algorithm was also applied to the real lidar and radiometer observations obtained over Minsk (Belarus) and Lille (France) AERONET sites. Suggested approach could be easily modified to retrieve aerosol properties from all possible combinations of existing passive and active remote sensing instruments
Philipson, née Ammenberg Petra. "Environmental Applications of Aquatic Remote Sensing". Doctoral thesis, Uppsala University, Centre for Image Analysis, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3328.
Texto completoMany lakes, coastal zones and oceans are directly or indirectly influenced by human activities. Through the outlet of a vast amount of substances in the air and water, we are changing the natural conditions on local and global levels.
Remote sensing sensors, on satellites or airplanes, can collect image data, providing the user with information about the depicted area, object or phenomenon. Three different applications are discussed in this thesis. In the first part, we have used a bio-optical model to derive information about water quality parameters from remote sensing data collected over Swedish lakes. In the second part, remote sensing data have been used to locate and map wastewater plumes from pulp and paper industries along the east coast of Sweden. Finally, in the third part, we have investigated to what extent satellite data can be used to monitor coral reefs and detect coral bleaching.
Regardless of application, it is important to understand the limitations of this technique. The available sensors are different and limited in terms of their spatial, spectral, radiometric and temporal resolution. We are also limited with respect to the objects we are monitoring, as the concentration of some substances is too low or the objects are too small, to be identified from space. However, this technique gives us a possibility to monitor our environment, in this case the aquatic environment, with a superior spatial coverage. Other advantages with remote sensing are the possibility of getting updated information and that the data is collected and distributed in digital form and therefore can be processed using computers.
Akkok, Inci. "Geological Mapping Using Remote Sensing Technologies". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610626/index.pdf.
Texto completoLguensat, Redouane. "Learning from ocean remote sensing data". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0050/document.
Texto completoReconstructing geophysical fields from noisy and partial remote sensing observations is a classical problem well studied in the literature. Data assimilation is one class of popular methods to address this issue, and is done through the use of classical stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. They proceed by an online evaluation of the physical modelin order to provide a forecast for the state. Therefore, the performanceof data assimilation heavily relies on the definition of the physical model. In contrast, the amount of observation and simulation data has grown very quickly in the last decades. This thesis focuses on performing data assimilation in a data-driven way and this without having access to explicit model equations. The main contribution of this thesis lies in developing and evaluating the Analog Data Assimilation(AnDA), which combines analog methods (nearest neighbors search) and stochastic filtering methods (Kalman filters, particle filters, Hidden Markov Models). Through applications to both simplified chaotic models and real ocean remote sensing case-studies (sea surface temperature, along-track sea level anomalies), we demonstrate the relevance of AnDA for missing data interpolation of nonlinear and high dimensional dynamical systems from irregularly-sampled and noisy observations. Driven by the rise of machine learning in the recent years, the last part of this thesis is dedicated to the development of deep learning models for the detection and tracking of ocean eddies from multi-source and/or multi-temporal data (e.g., SST-SSH), the general objective being to outperform expert-based approaches
Philipson, Petra. "Environmental applications of aquatic remote sensing /". Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://publications.uu.se/theses/91-554-5542-5/.
Texto completoMorris, Paul. "Remote sensing of the Earth's atmosphere". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317735.
Texto completoKupiec, J. A. "The remote sensing of foliar chemistry". Thesis, Swansea University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637829.
Texto completoSnapir, Boris. "SAR remote sensing of soil Moisture". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9253.
Texto completoHunter, Peter D. "Remote sensing in shallow lake ecology". Thesis, University of Stirling, 2007. http://hdl.handle.net/1893/365.
Texto completoAhmadzadeh, M. R. "Reasoning with uncertainty in remote sensing". Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/804/.
Texto completoCamilletti, Adam. "Improving instruments for infrared remote sensing". Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:a071e009-2caf-4d67-a283-b0cde9e3b117.
Texto completoAsal, Fahmy F. "Airborne remote sensing for landscape modelling". Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275311.
Texto completoPlummer, Stephen E. "Monitoring land reclamation by remote sensing". Thesis, University of Sheffield, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264617.
Texto completoJackson, Robin Geoffrey. "Remote sensing of forest canopy gaps". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327361.
Texto completoStrawbridge, Fiona. "Passive microwave remote sensing of vegetation". Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242948.
Texto completoMELONI, RAPHAEL BELO DA SILVA. "REMOTE SENSING IMAGE CLASSIFICATION USING SVM". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31439@1.
Texto completoClassificação de imagens é o processo de extração de informação em imagens digitais para reconhecimento de padrões e objetos homogêneos, que em sensoriamento remoto propõe-se a encontrar padrões entre os pixels pertencentes a uma imagem digital e áreas da superfície terrestre, para uma análise posterior por um especialista. Nesta dissertação, utilizamos a metodologia de aprendizado de máquina support vector machines para o problema de classificação de imagens, devido a possibilidade de trabalhar com grande quantidades de características. Construímos classificadores para o problema, utilizando imagens distintas que contém as informações de espaços de cores RGB e HSB, dos valores altimétricos e do canal infravermelho de uma região. Os valores de relevo ou altimétricos contribuíram de forma excelente nos resultados, uma vez que esses valores são características fundamentais de uma região e os mesmos não tinham sido analisados em classificação de imagens de sensoriamento remoto. Destacamos o resultado final, do problema de classificação de imagens, para o problema de identificação de piscinas com vizinhança dois. Os resultados obtidos são 99 por cento de acurácia, 100 por cento de precisão, 93,75 por cento de recall, 96,77 por cento de F-Score e 96,18 por cento de índice Kappa.
Image Classification is an information extraction process in digital images for pattern and homogeneous objects recognition. In remote sensing it aims to find patterns from digital images pixels, covering an area of earth surface, for subsequent analysis by a specialist. In this dissertation, to this images classification problem we employ Support Vector Machines, a machine learning methodology, due the possibility of working with large quantities of features. We built classifiers to the problem using different image information, such as RGB and HSB color spaces, altimetric values and infrared channel of a region. The altimetric values contributed to excellent results, since these values are fundamental characteristics of a region and they were not previously considered in remote sensing images classification. We highlight the final result, for the identifying swimming pools problem, when neighborhood is two. The results have 99 percent accuracy, 100 percent precision, 93.75 percent of recall, 96.77 percent F-Score and 96.18 percent of Kappa index.
Abbas, Mohammad. "Remote sensing of road surface conditions". Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7379/.
Texto completoAu, Wai Chung 1966. "Computational electomagnetics in microwave remote sensing". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11645.
Texto completoWatson, Iain Matthew. "Remote sensing of tropospheric volcanic plumes". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621824.
Texto completoMashimbye, Zama Eric. "Remote sensing of salt-affected soils". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79809.
Texto completoENGLISH ABSTRACT: Concrete evidence of dryland salinity was observed in the Berg River catchment in the Western Cape Province of South Africa. Soil salinization is a global land degradation hazard that negatively affects the productivity of soils. Timely and accurate detection of soil salinity is crucial for soil salinity monitoring and mitigation. It would be restrictive in terms of costs to use traditional wet chemistry methods to detect and monitor soil salinity in the entire Berg River catchment. The goal of this study was to investigate less tedious, accurate and cost effective techniques for better monitoring. Firstly, hyperspectral remote sensing (HRS) techniques that can best predict electrical conductivity (EC) in the soil using individual bands, a unique normalized difference soil salinity index (NDSI), partial least squares regression (PLSR) and bagging PLSR were investigated. Spectral reflectance of dry soil samples was measured using an analytical spectral device FieldSpec spectrometer in a darkroom. Soil salinity predictive models were computed using a training dataset (n = 63). An independent validation dataset (n = 32) was used to validate the models. Also, field-based regression predictive models for EC, pH, soluble Ca, Mg, Na, Cl and SO4 were developed using soil samples (n = 23) collected in the Sandspruit catchment. These soil samples were not ground or sieved and the spectra were measured using the sun as a source of energy to emulate field conditions. Secondly, the value of NIR spectroscopy for the prediction of EC, pH, soluble Ca, Mg, Na, Cl, and SO4 was evaluated using 49 soil samples. Spectral reflectance of dry soil samples was measured using the Bruker multipurpose analyser spectrometer. “Leave one out” cross validation (LOOCV) was used to calibrate PLSR predictive models for EC, pH, soluble Ca, Mg, Na, Cl, and SO4. The models were validated using R2, root mean square error of cross validation (RMSECV), ratio of prediction to deviation (RPD) and the ratio of prediction to interquartile distance (RPIQ). Thirdly, owing to the suitability of land components to map soil properties, the value of digital elevation models (DEMs) to delineate accurate land components was investigated. Land components extracted from the second version of the 30-m advanced spaceborne thermal emission and reflection radiometer global DEM (ASTER GDEM2), the 90-m shuttle radar topography mission DEM (SRTM DEM), two versions of the 5-m Stellenbosch University DEMs (SUDEM L1 and L2) and a 5-m DEM (GEOEYE DEM) derived from GeoEye stereo-images were compared. Land components were delineated using the slope gradient and aspect derivatives of each DEM. The land components were visually inspected and quantitatively analysed using the slope gradient standard deviation measure and the mean slope gradient local variance ratio for accuracy. Fourthly, the spatial accuracy of hydrological parameters (streamlines and catchment boundaries) delineated from the 5-m resolution SUDEM (L1 and L2), the 30-m ASTER GDEM2 and the 90-m SRTM was evaluated. Reference catchment boundary and streamlines were generated from the 1.5-m GEOEYE DEM. Catchment boundaries and streamlines were extracted from the DEMs using the Arc Hydro module for ArcGIS. Visual inspection, correctness index, a new Euclidean distance index and figure of merit index were used to validate the results. Finally, the value of terrain attributes to model soil salinity based on the EC of the soil and groundwater was investigated. Soil salinity regression predictive models were developed using CurveExpert software. In addition, stepwise multiple linear regression soil salinity predictive models based on annual evapotranspiration, the aridity index and terrain attributes were developed using Statgraphics software. The models were validated using R2, standard error and correlation coefficients. The models were also independently validated using groundwater hydro-census data covering the Sandspruit catchment. This study found that good predictions of soil salinity based on bagging PLSR using first derivative reflectance (R2 = 0.85), PLSR using untransformed reflectance (R2 = 0.70), a unique NDSI (R2 = 0.65) and the untransformed individual band at 2257 nm (R2 = 0.60) predictive models were achieved. Furthermore, it was established that reliable predictions of EC, pH, soluble Ca, Mg, Na, Cl and SO4 in the field are possible using first derivative reflectance. The R2 for EC, pH, soluble Ca, Mg, Na, Cl and SO4 predictive models are 0.85, 0.50, 0.65, 0.84, 0.79, 0.81 and 0.58 respectively. Regarding NIR spectroscopy, validation R2 for all the PLSR predictive models ranged from 0.62 to 0.87. RPD values were greater than 1.5 for all the models and RMSECV ranged from 0.22 to 0.51. This study affirmed that NIR spectroscopy has the potential to be used as a quick, reliable and less expensive method for evaluating salt-affected soils. As regards hydrological parameters, the study concluded that valuable hydrological parameters can be derived from DEMs. A new Euclidean distance ratio was proved to be a reliable tool to compare raster data sets. Regarding land components, it was concluded that higher resolution DEMs are required for delineating meaningful land components. It seems probable that land components may improve salinity modelling using hydrological modelling and that they can be integrated with other data sets to map soil salinity more accurately at catchment level. In the case of terrain attributes, the study established that promising soil salinity predictions could be made based on slope, elevation, evapotranspiration and terrain wetness index (TWI). Stepwise multiple linear regressions soil salinity predictive model based on elevation, evapotranspiration and TWI yielded slightly more accurate prediction of soil salinity. Overall, the study showed that it is possible to enhance soil salinity monitoring using HRS, NIR spectroscopy, land components, hydrological parameters and terrain attributes.
AFRIKAANSE OPSOMMING: Konkrete bewyse van droëland sout is waargeneem in die Bergrivier opvanggebied in die Wes- Kaap van Suid-Afrika. Verbrakking van grond is 'n wêreldwye probleem wat ‘n negatiewe invloed op die produktiwiteit van grond kan hê. Tydige en akkurate herkenning van verandering in grond soutgehalte is ‘n noodsaaklike aksie vir voorkoming. Dit sou beperkend wees in terme van koste om konvensionele nat chemiese metodes te gebruik vir die opsporing en monitering daarvan in die hele Bergrivier opvanggebied. Die doel van hierdie studie was om ondersoek in te stel na minder tydsame, akkurate en koste-effektiewe tegnieke vir beter monitering. Eerstens, is hiperspektrale afstandswaarnemings (HRS) tegnieke wat die beste in staat is elektriese geleidingsvermoë (EG) in die grond te kan voorspel deur gebruik te maak van individuele bande, 'n unieke genormaliseerde grond soutindeks verskil (NDSI), parsiële kleinste kwadratiese regressie (PLSR) en afwyking in PLSR, is ondersoek. Spektrale reflektansie van droë grondmonsters is gemeet deur gebruik te maak van 'n spektrale analitiese toestel: FieldSpec spektrometer in 'n donkerkamer. Voorspellings modelle vir grond soutgehalte is bereken met behulp van 'n toets datastel (n = 63). 'n onafhanklike validasie datastel (n = 32) is gebruik om die modelle te evalueer. Daarbenewens is veld-gebaseerde regressie voorspellings modelle vir EG, pH oplosbare Ca, Mg, Na, Cl and SO4 ontwikkel deur gebruik te maak van grondmonsters (n = 23) versamel in the Sandpruit opvangsgebied. Hierdie grondmonsters is nie gemaal of gesif nie en die spectra is gemeet deur gebruik te maak van die son as ‘n bron van energie om veld toestande na te boots. Tweedens, is die waarde van NIR spektroskopie vir die voorspelling van die EG, pH, oplosbare Ca, Mg, Na, Cl, en SO4 met behulp van 49 grondmonsters geëvalueer. Spektrale reflektansie van droë grondmonsters is gemeet deur gebruik te maak van die Bruker NIR veeldoelige analiseerder . Kruisvalidering (LOOCV) is gebruik om PLSR voorspellings modelle vir EG, pH, oplosbare Ca, Mg, Na, Cl, en SO4 te kalibreer. Hierdie modelle is gevalideer: R2, wortel-gemiddelde-kwadraat fout kruisvalidering (RMSECV), verhouding van voorspellings afwyking (RPD) en die verhouding van die voorspelling se inter-kwartiel afstand (RPIQ). Derdens is land komponente gekarteer vanweë die nut daat van tov grondeienskappe, en die waarde van DEMs is ondersoek om akkurate land komponente af te baken. Land komponente uit die tweede weergawe van die 30 m gevorderde ruimte termiese emissie en refleksie radio globale DEM (ASTER GDEM2), die 90-m ruimtetuig radar topografie sending DEM (SRTM DEM), twee weergawes van die 5 m Universiteit van Stellenbosch DEMs (SUDEM L1 en L2) en 'n 5 m DEM (GEOEYE DEM) afgelei van GeoEye stereo-beelde, is vergelyk. Land komponente is afgebaken met behulp van helling, gradiënt en aspek afgeleides van elke DEM. Die land komponente is visueel geïnspekteer en kwantitatief ontleed met behulp van die helling gradiënt standaardafwyking te meet en die gemiddelde helling-gradiënt-plaaslike variansie verhouding vir akkuraatheid. Vierdens, is die ruimtelike akkuraatheid van hidrologiese parameters (stroomlyn en opvanggebied grense) geëvalueer soos afgelei vanaf die 5 m resolusie SUDEM (L1 en L2), die 30 m ASTER GDEM2 en die 90 m SRTM . Die verwysings opvanggebied grens en stroomlyn is gegenereer vanaf die 1,5-m GEOEYE DEM. Opvanggebied grense en stroomlyn uit die DEMs is bepaal deur gebruik te maak van die Arc Hydro module in ArcGIS. Visuele inspeksie, korrektheid indeks, 'n nuwe Euklidiese afstand indeks en die indikasie-van-meriete indeks is gebruik om die resultate te valideer. Laastens is die waarde van die terrein eienskappe om grond southalte te modeleer ondersoek, gebaseer op die EG van die grond en grondwater. Grond soutgehalte regressie voorspellings modelle is ontwikkel met behulp van CurveExpert sagteware. Verder, stapsgewyse meervoudige lineêre regressie grond soutgehalte voorspellings modelle gebaseer op jaarlikse evapotranspirasie, die dorheids indeks en terrein eienskappe is ontwikkel met behulp van Statgraphics sagteware. Die modelle is gevalideer deur gebruik te maak van R2, standaardfout en korrelasiekoëffisiënte. Die modelle is ook onafhanklik bekragtig deur die gebruik van grondwater hidro-sensus-data wat die Sandspruit opvanggebied insluit. Hierdie studie het bevind dat 'n goeie voorspelling van grond soutgehalte gebaseer op uitsak PLSR met behulp van eerste orde afgeleide reflektansie (R2 = 0,85), PLSR deur gebruik te maak van ongetransformeerde reflektansie (R2 = 0,70), 'n unieke NDSI (R2 = 0,65) en die ongetransformeerde individuele band op 2257 nm (R2 = 0,60) voorspellings modelle verkry is. Verder is vasgestel dat betroubare voorspellings van die EG, pH, oplosbare Ca, Mg, Na, Cl en SO4 in die veld moontlik is met behulp van eerste afgeleide reflektansie. Die R2 van EG, pH, oplosbare Ca, Mg, Na, Cl en SO4 is 0.85, 0.50, 0.65, 0.84, 0.79, 0.81 en 0.58 onderskeidelik. Ten opsigte van NIR spektroskopie het die validasie van R2 vir al die PLSR voorspellings modelle gewissel tussen 0,62-0,87. Die RPD waardes was groter as 1,5 vir al die modelle en RMSECV het gewissel tussen 0,22-0,51. Hierdie studie het bevestig dat NIR spektroskopie die potensiaal het om gebruik te word as 'n vinnige, betroubare en goedkoper metode vir die analise van soutgeaffekteerde gronde. T.o.v. hidrologiese parameters, het die studie tot die gevolgtrekking gekom dat waardevolle hidrologiese parameters afgelei kan word uit DEMs. 'n nuwe Euklidiese afstand verhouding is bevestig as 'n betroubare hulpmiddel om raster datastelle te vergelyk. Ten opsigte van grond komponente, is daar tot die gevolgtrekking gekom dat hoër resolusie DEMs nodig is vir die bepaling van sinvolle land komponente. Dit lyk waarskynlik dat die land komponent soutgehalte modellering hidrologiese modellering verbeter en dat hulle geïntegreer kan word met ander datastelle vir meer akkurate kaarte op opvangsgebied skaal. In die geval van die terrein eienskappe het, die studie vasgestel dat belowende grond soutgehalte voorspellings gemaak kan word gebaseer op helling, elevasie, evapotranspirasie en terrein natheid indeks (TWI). 'n stapsgewyse meervoudige lineêre regressie grond soutgehalte voorspellings model wat gebaseer is op elevasie, evapotranspirasie en TWI het effens meer akkurate voorspellings van die grond soutgehalte gelewer. In geheel gesien, het die studie getoon dat dit moontlik is om grond soutgehalte monitering te verbeter met behulp van HRS, NIR spektroskopie, land komponente, hidrologiese parameters en terrein eienskappe.
The Agricultural Research Council (ARC), Water Research Commission and the National Research Foundation for funding.
Moon, Alex. "Remote sensing of bathing water quality". Thesis, Middlesex University, 2003. http://eprints.mdx.ac.uk/13422/.
Texto completoGray, Rebecca. "Remote sensing of Jupiter's magnetospheric dynamics". Thesis, Lancaster University, 2018. http://eprints.lancs.ac.uk/125428/.
Texto completoBosdogianni, Panagiota. "Mixed pixel classification in remote sensing". Thesis, University of Surrey, 1996. http://epubs.surrey.ac.uk/843999/.
Texto completoBennett, Kimberly Dean. "Fiber optic techniques for remote sensing". Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/104293.
Texto completoKam, F. "Classification techniques for hyperspectral remote sensing". Thesis, Department of Informatics and Sensors, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/6163.
Texto completoJin, Xiaoying. "Automatic extraction of man-made objects from high-resolution satellite imagery by information fusion". Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/5816.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (November 15, 2006) Vita. Includes bibliographical references.
Saraf, Arun Kumar. "Remote sensing applications in geobotanical exploration : some applications of remote sensing to geological surveying in vegetated areas". Thesis, University of Dundee, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276975.
Texto completoCisz, Adam. "Performance comparison of hyperspectral target detection algorithms /". Online version of thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/3020.
Texto completoQi, Jiaguo 1959. "Spectral properties of paddy rice with variable water depth". Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277119.
Texto completoGuimarães, Siane Cristhina Pedroso. "Sistema de informação geográfica e sensoriamento remoto na avaliação do processo de mudança de uso da terra para subsidiar o planejamento de bacias hidrográficas /". Rio Claro : [s.n.], 2008. http://hdl.handle.net/11449/102914.
Texto completoBanca: Marcos Estevan Del Prette
Banca: Eraldo Aparecido Trondoli Matricardi
Banca: Daniel Marcos Bonotto
Banca: Archimedes Perez Filho
Resumo: A presente pesquisa objetivou elaboração de uma proposta de ordenamento da ocupação territorial da Sub-bacia Hidrográfica do Baixo Rio Candeias, localizada no Estado de Rondônia, utilizando ferramentas de Sensoriamento Remoto e Sistemas de Informações Geográficas na avaliação do processo de mudanças de uso da terra para subsidiar o planejamento de bacias hidrográficas. Nesta pesquisa, utilizou-se imagens de satélite digitais e analógicas e Sistema Processamento de Informações Georreferenciadas - SPRING, disponibilizados pelo Instituto Nacional de pesquisas Espaciais - INPE, no qual foram armazenadas, processadas e analisadas todas as informações inerentes a pesquisa. Inicialmente foi realizado um Diagnóstico Zero da sub-bacia, que serviu de base de dados para estabelecer e identificar as deficiências técnicas que necessitam ser complementadas em função das necessidades das comunidades abrangidas. Através da análise da rede de drenagem foi possível analisar a morfoestrutura e morfotectonica da área, identificando as falhas e fraturas, bem como, anomalias do tipo alto/baixo estrutural. Foi realizada uma caracterização das unidades fisiográficas, definidas a partir da interpretação das imagens orbitais, com identificação das formas, reconhecimento e deduções dos fenômenos na elaboração da paisagem atual e subatual. A estas informações foram agregadas, informações de pedologia de fundamental importância para entender a dinâmica e evolução da paisagem e consequentemente, na elaboração do mapa de subzonas. Os limites das Subzonas coincidiram com os limites das unidades de solos incrementadas a unidades geológicas, e como resultado definiu-se dezenove subzonas, que agruparam todas as informações (morfoestrutura e morfotectonica, fisiografia, solos, vegetação e litologia) produzidas e pesquisadas... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This research objective was to prepare a proposal of suitable land uses for the Lower Candeias River Watershed, geographically located within the State of Rondônia, Brazil, using Remote Sensing and Geographic Information Systems approaches to assess land use and land cover change processos and to provide information to support preparation of a sustainable watershed occupation plan. Satellite imagery and a Geographic Information System (SPRING) developed by the National Space Research Institute (INPE) were used to store, process, and analyze digital datasets. Initially, a "Zero Diagnostic" of the Lower Candeias River Watershed was prepared. This diagnostic was used as supporting information to identify technical weakness in the methodological approaches, which required complementary efforts given the local community and environmental characteristics. In addition, based on the river network analysis, it was possible to define the morphostructure and morphotectonic of the study area, which made possible to identify geologic faults and fractures, and low/high structural anomalies. Physiographic units were identified by analyzing satellite imagery, which included form identification, recognition and deduction of the phenomenon that were shaping current and previous landscape. The critical pedologic information were aggregated to support analysis of the dynamic and evolution of the landscape and, subsequently, to support preparation of the subzoning map of the Lower Candeias River Watershed. The subzones limits overlapped the soil unit limits and, by merging them with the geologic units, it resulted in 19 new subzones. Therefore, these new 19 subzones incorporated all information (morfoestrutura and morfotectonica, fisiografia, ground, vegetation and litologia) derived from this dissertation research. Therefore, the land use map... (Complete abstract click electronic access below)
Doutor
Yetkin, Erdem. "Alteration mapping by remote mapping by remote sensing Application to Hasandağ- Melendiz volcanic complex /". Ankara : METU, 2003. http://etd.lib.metu.edu.tr/upload/1090927/index.pdf.
Texto completoLumbuenamo, Sinsi Dianza 1954 y Sinsi Dianza 1954 Lumbuenamo. "Litter cover effect on soil spectral response". Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276620.
Texto completoBishoff, Josef P. "Target detection using oblique hyperspectral imagery : a domain trade study /". Online version of thesis, 2008. http://hdl.handle.net/1850/7834.
Texto completoWright, Jonathan C. "Evaluation of LOWTRAN and MODTRAN for use over high zenith angle/long path length viewing /". Online version of thesis, 1991. http://hdl.handle.net/1850/11352.
Texto completoEgido, Egido Alejandro. "GNSS reflectometry for land remote sensing applications". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129090.
Texto completoLa humedad del suelo y la biomasa de la vegetaci on son dos parametros clave desde un punto de vista tanto cient co como econ omico. Por una parte son esenciales para el estudio del ciclo del agua y del carbono. Por otra parte, la humedad del suelo es esencial para la gesti on de las cosechas y los recursos h dricos, mientras que la biomasa es un par ametro fundamental para ciertos programas de desarrollo. Varias formas de teledetección se han utilizado para la observaci on remota de estos par ametros, sin embargo, su monitorizaci on con la precisi on y resoluci on necesarias es todav a un importante reto tecnol ogico. Esta Tesis evalua la capacidad de medir humedad del suelo y biomasa de la vegetaci on con señales de Sistemas Satelitales de Posicionamiento Global (GNSS, en sus siglas en ingl es) reflejadas sobre la Tierra. La t ecnica se conoce como Reflectometr í a GNSS (GNSS-R), la cual ha ganado un creciente inter es dentro de la comunidad científ ca durante las dos ultimas d ecadas. Experimentos previos a este trabajo ya demostraron la capacidad de observar cambios en la reflectividad del terreno con GNSS-R. El uso de la componente copolar y contrapolar de la señal reflejada fue propuesto para independizar la medida de humedad del suelo de otros par ametros como la rugosidad del terreno. Sin embargo, no se pudo demostrar una evidencia experimental de la viabilidad de la t ecnica. En este trabajo se analiza desde un punto de vista te orico y experimental el uso de la informaci on polarim etrica de la señales GNSS reflejadas sobre el suelo para la determinaci on de humedad y biomasa de la vegetaci on. La Tesis se estructura en cuatro partes principales. En la primera parte se eval uan los aspectos fundamentales de la t ecnica y se da una revisi on detallada del estado del arte para la observaci on de humedad y vegetaci on. En la segunda parte se discuten los modelos de dispersi on electromagn etica sobre el suelo. Simulaciones con estos modelos fueron realizadas para analizar las componentes coherente e incoherente de la dispersi on de la señal reflejada sobre distintos tipos de terreno. Durante este trabajo se desarroll o un modelo de reflexi on simpli cado para poder relacionar de forma directa las observaciones con los par ametros geof sicos del suelo. La tercera parte describe las campañas experimentales realizadas durante este trabajo y discute el an alisis y la comparaci on de los datos GNSS-R con las mediciones in-situ. Como se predice por los modelos, se comprob o experimentalmente que la señal reflejada est a formada por una componente coherente y otra incoherente. Una t ecnica de an alisis de datos se propuso para la separacióon de estas dos contribuciones. Con los datos de las campañas experimentales se demonstr o el bene cio del uso de la informaci on polarim etrica en las señales GNSS reflejadas para la medici on de humedad del suelo, para la mayor a de las condiciones de rugosidad observadas. Tambi en se demostr o la capacidad de este tipo de observaciones para medir zonas boscosas densamente pobladas. La cuarta parte de la tesis analiza la capacidad de la t ecnica para observar cambios en la reflectividad del suelo desde un sat elite en orbita baja. Los resultados obtenidos muestran que la reflectividad del terreno podr a medirse con gran precisi on ya que la componente coherente del scattering ser a la predominante en ese tipo de escenarios. En este trabajo de doctorado se muestran la potencialidades de la t ecnica GNSS-R para observar remotamente par ametros del suelo tan importantes como la humedad del suelo y la biomasa de la vegetaci on. Este tipo de medidas pueden complementar un amplio rango de misiones de observaci on de la Tierra como SMOS, SMAP, y Biomass, esta ultima recientemente aprobada para la siguiente misi on Earth Explorer de la ESA.
Amrani, Naoufal. "Spectral decorrelation for coding remote sensing data". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/402237.
Texto completoToday remote sensing is essential for many applications addressed to Earth Observation. The potential capability of remote sensing in providing valuable information enables a better understanding of Earth characteristics and human activities. Recent advances in satellite sensors allow recovering large areas, producing images with unprecedented spatial, spectral and temporal resolution. This amount of data implies a need for efficient compression techniques to improve the capabilities of storage and transmissions. Most of these techniques are dominated by transforms or prediction methods. This thesis aims at deeply analyzing the state-of-the-art techniques and at providing efficient solutions that improve the compression of remote sensing data. In order to understand the non-linear independence and data compaction of hyperspectral images, we investigate the improvement of Principal Component Analysis (PCA) that provides optimal independence for Gaussian sources. We analyse the lossless coding efficiency of Principal Polynomial Analysis (PPA), which generalizes PCA by removing non-linear relations among components using polynomial regression. We show that principal components are not able to predict each other through polynomial regression, resulting in no improvement of PCA at the cost of higher complexity and larger amount of side information. This analysis allows us to understand better the concept of prediction in the transform domain for compression purposes. Therefore, rather than using expensive sophisticated transforms like PCA, we focus on theoretically suboptimal but simpler transforms like Discrete Wavelet Transform (DWT). Meanwhile, we adopt predictive techniques to exploit any remaining statistical dependence. Thus, we introduce a novel scheme, called Regression Wavelet Analysis (RWA), to increase the coefficient independence in remote sensing images. The algorithm employs multivariate regression to exploit the relationships among wavelet-transformed components. The proposed RWA has many important advantages, like the low complexity and no dynamic range expansion. Nevertheless, the most important advantage consists of its performance for lossless coding. Extensive experimental results over a wide range of sensors, such as AVIRIS, IASI and Hyperion, indicate that RWA outperforms the most prominent transforms like PCA and wavelets, and also the best recent coding standard, CCSDS-123. We extend the benefits of RWA to progressive lossy-to-lossless. We show that RWA can attain a rate-distortion performance superior to those obtained with the state-of-the-art techniques. To this end, we propose a Prediction Weighting Scheme that captures the prediction significance of each transformed components. The reason of using a weighting strategy is that coefficients with similar magnitude can have extremely different impact on the reconstruction quality. For a deeper analysis, we also investigate the bias in the least squares parameters, when coding with low bitrates. We show that the RWA parameters are unbiased for lossy coding, where the regression models are used not with the original transformed components, but with the recovered ones, which lack some information due to the lossy reconstruction. We show that hyperspectral images with large size in the spectral dimension can be coded via RWA without side information and at a lower computational cost. Finally, we introduce a very low-complexity version of RWA algorithm. Here, the prediction is based on only some few components, while the performance is maintained. When the complexity of RWA is taken to an extremely low level, a careful model selection is necessary. Contrary to expensive selection procedures, we propose a simple and efficient strategy called \textit{neighbor selection} for using small regression models. On a set of well-known and representative hyperspectral images, these small models maintain the excellent coding performance of RWA, while reducing the computational cost by about 90\%.
Gregorio, López Eduard. "Lidar remote sensing of pesticide spray drift". Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/96788.
Texto completoEn esta tesis doctoral se propone utilizar la técnica LIDAR (LIght Detection And Ranging) para monitorizar la deriva de pesticidas. A diferencia de los colectores in situ, esta técnica permite medir los aerosoles de forma remota, con elevada resolución temporal y en distancia. Los objetivos de esta tesis son (1) diseñar un sistema lidar específico para la medida de la deriva y (2) evaluar la capacidad de esta técnica para cuantificar la concentración en las plumas de pesticidas. Para la consecución del objetivo (1) se ha elaborado una metodología de diseño, validada mediante la construcción de un prototipo de ceilómetro lidar biaxial. Partiendo de esta metodología se han establecido los parámetros de diseño del sistema lidar específico para medir la deriva: longitud de onda de 1550 nm, energía por pulso igual a 25 μJ, etc. Respecto al objetivo (2), se propone un modelo teórico que relaciona las medidas lidar de la deriva con las obtenidas utilizando colectores pasivos. La relación entre ambos tipos de sensores también ha sido estudiada experimentalmente. Las medidas mostraron que para cada ensayo existe una elevada correlación lineal (R2≈0.9) entre la señal lidar y los colectores.
This doctoral thesis proposes the use of the LIDAR (LIght Detection And Ranging) technique for spray drift monitoring. Unlike in situ collectors, this technique enables remote measurement of aerosols with high temporal and range resolution. The objectives of this thesis are as follows: (1) the design of a lidar system specifically for the remote sensing of pesticide spray drift and (2) assessment of the capacity of lidar technology to quantify droplet concentration in drift clouds. For the purposes of objective (1), a design methodology was elaborated. This methodology was validated with the construction of a biaxial lidar ceilometer prototype. Taking this methodology as a starting point the design parameters of a lidar system specifically for spray drift measurement were established: 1550 nm wavelength, 25 μJ de pulse energy, etc. As for objective (2), it is proposed a quantitative analytical model which relates the lidar spray drift measurements with those obtained using passive collectors. The relationship between the two sensor types was also studied experimentally. The measurements showed that for each test there is a high linear correlation (R2≈0.9) between the lidar signal and the collectors
Koc, Ayten. "Remote Sensing Study Of Surgu Fault Zone". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606611/index.pdf.
Texto completorgü
Fault Zone is investigated by using remotely sensed data including Landsat TM and ASTER imagery combined with SRTM, and stereo-aerial photographs. They are used to extract information related to regional lineaments and tectono-morphological characteristics of the SFZ. Various image processing and enhancement techniques including contrast enhancement, PCA, DS and color composites are applied on the imagery and three different approaches including manual, semi automatic and automatic lineament extraction methods are followed. Then the lineaments obtained from ASTER and Landsat imagery using manual and automatic methods are overlaid to produce a final lineaments map. The results have indicated that, the total number and length of the lineaments obtained from automatic is more than other methods while the percentages of overlapping lineaments for the manual method is more than the automatic method which indicate that the lineaments from automatic method does not discriminate man made features which result more lineaments and less overlapping ratio with respect to final map. It is revealed from the detail analysis that, the SFZ displays characteristic deformation patterns of strike-slip faults, such as pressure ridges, linear fault controlled valleys, deflected stream courses, rotated blocks and juxtaposition of stratigraphical horizons in macroscopic scale. In addition to these, kinematic analyses carried out using fault slip data indicated that the Sü
rgü
Fault Zone is dextral strike-slip fault zone with a reverse component of slip and cumulative displacement along the fault is more than 2 km.
Shaw, David. "Remote sensing of natural Scots pine regeneration". Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/25176.
Texto completo