Literatura académica sobre el tema "Regularized quantiles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Regularized quantiles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Regularized quantiles"
Santos, Patricia Mendes dos, Ana Carolina Campana Nascimento, Moysés Nascimento, Fabyano Fonseca e. Silva, Camila Ferreira Azevedo, Rodrigo Reis Mota, Simone Eliza Facioni Guimarães y Paulo Sávio Lopes. "Use of regularized quantile regression to predict the genetic merit of pigs for asymmetric carcass traits". Pesquisa Agropecuária Brasileira 53, n.º 9 (septiembre de 2018): 1011–17. http://dx.doi.org/10.1590/s0100-204x2018000900004.
Texto completoBang, Sungwan y Myoungshic Jhun. "Adaptive sup-norm regularized simultaneous multiple quantiles regression". Statistics 48, n.º 1 (30 de agosto de 2012): 17–33. http://dx.doi.org/10.1080/02331888.2012.719512.
Texto completoZou, Hui y Ming Yuan. "Regularized simultaneous model selection in multiple quantiles regression". Computational Statistics & Data Analysis 52, n.º 12 (agosto de 2008): 5296–304. http://dx.doi.org/10.1016/j.csda.2008.05.013.
Texto completoNascimento, Ana Carolina Campana, Camila Ferreira Azevedo, Cynthia Aparecida Valiati Barreto, Gabriela França Oliveira y Moysés Nascimento. "Quantile regression for genomic selection of growth curves". Acta Scientiarum. Agronomy 46, n.º 1 (12 de diciembre de 2023): e65081. http://dx.doi.org/10.4025/actasciagron.v46i1.65081.
Texto completoLi, Jia, Viktor Todorov y George Tauchen. "ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION". Econometric Theory 32, n.º 5 (25 de mayo de 2015): 1253–88. http://dx.doi.org/10.1017/s0266466615000171.
Texto completoOliveira, Gabriela França, Ana Carolina Campana Nascimento, Moysés Nascimento, Isabela de Castro Sant'Anna, Juan Vicente Romero, Camila Ferreira Azevedo, Leonardo Lopes Bhering y Eveline Teixeira Caixeta Moura. "Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study". PLOS ONE 16, n.º 1 (5 de enero de 2021): e0243666. http://dx.doi.org/10.1371/journal.pone.0243666.
Texto completoSun, Pengju, Meng Li y Hongwei Sun. "Quantile Regression Learning with Coefficient Dependent lq-Regularizer". MATEC Web of Conferences 173 (2018): 03033. http://dx.doi.org/10.1051/matecconf/201817303033.
Texto completoPapp, Gábor, Imre Kondor y Fabio Caccioli. "Optimizing Expected Shortfall under an ℓ1 Constraint—An Analytic Approach". Entropy 23, n.º 5 (24 de abril de 2021): 523. http://dx.doi.org/10.3390/e23050523.
Texto completoWu, Hanwei y Markus Flierl. "Vector Quantization-Based Regularization for Autoencoders". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6380–87. http://dx.doi.org/10.1609/aaai.v34i04.6108.
Texto completoLi, Meng y Hong-Wei Sun. "Asymptotic analysis of quantile regression learning based on coefficient dependent regularization". International Journal of Wavelets, Multiresolution and Information Processing 13, n.º 04 (julio de 2015): 1550018. http://dx.doi.org/10.1142/s0219691315500186.
Texto completoTesis sobre el tema "Regularized quantiles"
Thurin, Gauthier. "Quantiles multivariés et transport optimal régularisé". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Texto completoThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Hashem, Hussein Abdulahman. "Regularized and robust regression methods for high dimensional data". Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9197.
Texto completoSchulze, Bert-Wolfgang, Vladimir Nazaikinskii y Boris Sternin. "The index of quantized contact transformations on manifolds with conical singularities". Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2527/.
Texto completoLibros sobre el tema "Regularized quantiles"
Godsey, William D. The Sinews of Habsburg Power. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809395.001.0001.
Texto completoActas de conferencias sobre el tema "Regularized quantiles"
Ahmad, Tawsif y Ning Zhou. "Enhancing Solar Power Forecasting with Regularized Constrained Quantile Regression Averaging and Bootstrapping Techniques". En 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688655.
Texto completoLane, R. G., R. A. Johnston, R. Irwan y T. J. Connolly. "Regularized blind deconvolution". En Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/srs.1998.stua.2.
Texto completoJongebloed, Rolf, Erik Bochinski, Lieven Lange y Thomas Sikora. "Quantized and Regularized Optimization for Coding Images Using Steered Mixtures-of-Experts". En 2019 Data Compression Conference (DCC). IEEE, 2019. http://dx.doi.org/10.1109/dcc.2019.00044.
Texto completoSun, Hanbo, Zhenhua Zhu, Yi Cai, Xiaoming Chen, Yu Wang y Huazhong Yang. "An Energy-Efficient Quantized and Regularized Training Framework For Processing-In-Memory Accelerators". En 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020. http://dx.doi.org/10.1109/asp-dac47756.2020.9045192.
Texto completoYu, Shujian, Luis Sanchez Giraldo y Jose Principe. "Information-Theoretic Methods in Deep Neural Networks: Recent Advances and Emerging Opportunities". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/633.
Texto completoProkopchina, Svetlana y Veronika Zaslavskaia. "Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions". En 9th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.131805.
Texto completoChen, Yuzhao, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu y Junzhou Huang. "On Self-Distilling Graph Neural Network". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/314.
Texto completoSingh, Yuvraj, Adithya Jayakumar y Giorgio Rizzoni. "Data-Driven Estimation of Coastdown Road Load". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2276.
Texto completo