Siga este enlace para ver otros tipos de publicaciones sobre el tema: Regular polytopes.

Artículos de revistas sobre el tema "Regular polytopes"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Regular polytopes".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lalvani, Haresh. "Higher Dimensional Periodic Table Of Regular And Semi-Regular Polytopes". International Journal of Space Structures 11, n.º 1-2 (abril de 1996): 155–71. http://dx.doi.org/10.1177/026635119601-222.

Texto completo
Resumen
This paper presents a higher-dimensional periodic table of regular and semi-regular n-dimensional polytopes. For regular n-dimensional polytopes, designated by their Schlafli symbol {p,q,r,…u,v,w}, the table is an (n-1)-dimensional hypercubic lattice in which each polytope occupies a different vertex of the lattice. The values of p,q,r,…u,v,w also establish the corresponding n-dimensional Cartesian co-ordinates (p,q,r,…u,v,w) of their respective positions in the hypercubic lattice. The table is exhaustive and includes all known regular polytopes in Euclidean, spherical and hyperbolic spaces, in addition to others candidate polytopes which do not appear in the literature. For n-dimensional semi-regular polytopes, each vertex of this hypercubic lattice branches into analogous n-dimensional cubes, where each n-cube encompasses a family with a distinct semi-regular polytope occupying each vertex of each n-cube. The semi-regular polytopes are obtained by varying the location of a vertex within the fundamental region of the polytope. Continuous transformations within each family are a natural fallout of this variable vertex location. Extensions of this method to less regular space structures and to derivation of architectural form are in progress and provide a way to develop an integrated index for space structures. Besides the economy in computational processing of space structures, integrated indices based on unified morphologies are essential for establishing a meta-structural knowledge base for architecture.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schulte, Egon y Asia Ivić Weiss. "Free Extensions of Chiral Polytopes". Canadian Journal of Mathematics 47, n.º 3 (1 de junio de 1995): 641–54. http://dx.doi.org/10.4153/cjm-1995-033-7.

Texto completo
Resumen
AbstractAbstract polytopes are discrete geometric structures which generalize the classical notion of a convex polytope. Chiral polytopes are those abstract polytopes which have maximal symmetry by rotation, in contrast to the abstract regular polytopes which have maximal symmetry by reflection. Chirality is a fascinating phenomenon which does not occur in the classical theory. The paper proves the following general extension result for chiral polytopes. If 𝒦 is a chiral polytope with regular facets 𝓕 then among all chiral polytopes with facets 𝒦 there is a universal such polytope 𝓟, whose group is a certain amalgamated product of the groups of 𝒦 and 𝓕. Finite extensions are also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

CONNOR, THOMAS, DIMITRI LEEMANS y MARK MIXER. "ABSTRACT REGULAR POLYTOPES FOR THE O'NAN GROUP". International Journal of Algebra and Computation 24, n.º 01 (febrero de 2014): 59–68. http://dx.doi.org/10.1142/s0218196714500052.

Texto completo
Resumen
In this paper, we consider how the O'Nan sporadic simple group acts as the automorphism group of an abstract regular polytope. In particular, we prove that there is no regular polytope of rank at least five with automorphism group isomorphic to O′N. Moreover, we classify all rank four regular polytopes having O′N as their automorphism group.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Comes, Jonathan. "Regular Polytopes". Mathematics Enthusiast 1, n.º 2 (1 de octubre de 2004): 30–37. http://dx.doi.org/10.54870/1551-3440.1007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hou, Dong-Dong, Yan-Quan Feng y Dimitri Leemans. "Existence of regular 3-polytopes of order 2𝑛". Journal of Group Theory 22, n.º 4 (1 de julio de 2019): 579–616. http://dx.doi.org/10.1515/jgth-2018-0155.

Texto completo
Resumen
AbstractIn this paper, we prove that for any positive integers {n,s,t} such that {n\geq 10}, {s,t\geq 2} and {n-1\geq s+t}, there exists a regular polytope with Schläfli type {\{2^{s},2^{t}\}} and its automorphism group is of order {2^{n}}. Furthermore, we classify regular polytopes with automorphism groups of order {2^{n}} and Schläfli types {\{4,2^{n-3}\},\{4,2^{n-4}\}} and {\{4,2^{n-5}\}}, therefore giving a partial answer to a problem proposed by Schulte and Weiss in [Problems on polytopes, their groups, and realizations, Period. Math. Hungar. 53 2006, 1–2, 231–255].
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boya, Luis J. y Cristian Rivera. "On Regular Polytopes". Reports on Mathematical Physics 71, n.º 2 (abril de 2013): 149–61. http://dx.doi.org/10.1016/s0034-4877(13)60026-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cuypers, Hans. "Regular quaternionic polytopes". Linear Algebra and its Applications 226-228 (septiembre de 1995): 311–29. http://dx.doi.org/10.1016/0024-3795(95)00149-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

McMullen, Peter y Egon Schulte. "Flat regular polytopes". Annals of Combinatorics 1, n.º 1 (diciembre de 1997): 261–78. http://dx.doi.org/10.1007/bf02558480.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Coxeter, H. S. M. "Regular and semi-regular polytopes. II". Mathematische Zeitschrift 188, n.º 4 (diciembre de 1985): 559–91. http://dx.doi.org/10.1007/bf01161657.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Coxeter, H. S. M. "Regular and semi-regular polytopes. III". Mathematische Zeitschrift 200, n.º 1 (marzo de 1988): 3–45. http://dx.doi.org/10.1007/bf01161745.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Conder, Marston y Gabe Cunningham. "Tight orientably-regular polytopes". Ars Mathematica Contemporanea 8, n.º 1 (7 de mayo de 2014): 69–82. http://dx.doi.org/10.26493/1855-3974.554.e50.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Coxeter, H. S. M. "Reciprocating the Regular Polytopes". Journal of the London Mathematical Society 55, n.º 3 (junio de 1997): 549–57. http://dx.doi.org/10.1112/s0024610797004833.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Allendoerfer, C. B. "Book Review: Regular polytopes". Bulletin of the American Mathematical Society 37, n.º 01 (21 de diciembre de 1999): 107——107. http://dx.doi.org/10.1090/s0273-0979-99-00839-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hartley, Michael. "Combinatorially regular Euler polytopes". Bulletin of the Australian Mathematical Society 56, n.º 1 (agosto de 1997): 173–74. http://dx.doi.org/10.1017/s0004972700030860.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

McMullen, Peter. "Realizations of regular polytopes". Aequationes Mathematicae 36, n.º 2-3 (junio de 1988): 320. http://dx.doi.org/10.1007/bf01836099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Saldanha, Nicolau C. y Carlos Tomei. "Spectra of regular polytopes". Discrete & Computational Geometry 7, n.º 4 (abril de 1992): 403–14. http://dx.doi.org/10.1007/bf02187851.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

McMullen, P. y E. Schulte. "Constructions for regular polytopes". Journal of Combinatorial Theory, Series A 53, n.º 1 (enero de 1990): 1–28. http://dx.doi.org/10.1016/0097-3165(90)90017-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

McMullen, Peter. "Locally projective regular polytopes". Journal of Combinatorial Theory, Series A 65, n.º 1 (enero de 1994): 1–10. http://dx.doi.org/10.1016/0097-3165(94)90033-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Cunningham, Gabe. "Mixing regular convex polytopes". Discrete Mathematics 312, n.º 4 (febrero de 2012): 763–71. http://dx.doi.org/10.1016/j.disc.2011.11.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

McMullen, Peter y Egon Schulte. "Higher Toroidal Regular Polytopes". Advances in Mathematics 117, n.º 1 (enero de 1996): 17–51. http://dx.doi.org/10.1006/aima.1996.0002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Brandenberg, Ren�. "Radii of Regular Polytopes". Discrete & Computational Geometry 33, n.º 1 (20 de octubre de 2004): 43–55. http://dx.doi.org/10.1007/s00454-004-1127-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

McMullen, Peter. "Realizations of regular polytopes". Aequationes Mathematicae 37, n.º 1 (febrero de 1989): 38–56. http://dx.doi.org/10.1007/bf01837943.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Berestovskii, V. N. y Y. G. Nikonorov. "О конечных однородных метрических пространствах". Владикавказский математический журнал, n.º 2 (22 de junio de 2022): 51–61. http://dx.doi.org/10.46698/h7670-4977-9928-z.

Texto completo
Resumen
This survey is devoted to recently obtained results on finite homogeneousmetric spaces. The main subject of discussion is the classification of regular and semiregular polytopes in Euclidean spacesby whether or not their vertex sets have the normal homogeneity property or the Clifford - Wolf homogeneity property.Every finite homogeneous metric subspace of an Euclidean space represents the vertex set of a compact convex polytope with the isometry group that is transitive on the set of vertices, moreover, all these vertices lie on some sphere. Consequently, the study of such subsets is closely related to the theory of convex polytopes in Euclidean spaces. The normal generalized homogeneity and the Clifford - Wolf homogeneity describe more stronger properties than the homogeneity. Therefore, it is natural to first check the presence of these properties for the vertex sets of regular and semiregular polytopes. In addition to the classification results, the paper contains a description of the main tools for the study of the relevant objects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Schulte, Egon. "Amalgamation of Regular Incidence-Polytopes". Proceedings of the London Mathematical Society s3-56, n.º 2 (marzo de 1988): 303–28. http://dx.doi.org/10.1112/plms/s3-56.2.303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Adams, Joshua, Peter Zvengrowski y Philip Laird. "Vertex embeddings of regular polytopes". Expositiones Mathematicae 21, n.º 4 (2003): 339–53. http://dx.doi.org/10.1016/s0723-0869(03)80037-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Saldanha, Nicolau C. y Carlos Tomei. "Spectra of semi-regular polytopes". Boletim da Sociedade Brasileira de Matem�tica 29, n.º 1 (marzo de 1998): 25–51. http://dx.doi.org/10.1007/bf01245867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

McMullen, Peter. "Regular Polytopes of Full Rank". Discrete and Computational Geometry 32, n.º 1 (1 de mayo de 2004): 1–35. http://dx.doi.org/10.1007/s00454-004-0848-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Effenberger, Felix y Wolfgang Kühnel. "Hamiltonian Submanifolds of Regular Polytopes". Discrete & Computational Geometry 43, n.º 2 (31 de marzo de 2009): 242–62. http://dx.doi.org/10.1007/s00454-009-9151-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Cantwell, Kristal. "All regular polytopes are Ramsey". Journal of Combinatorial Theory, Series A 114, n.º 3 (abril de 2007): 555–62. http://dx.doi.org/10.1016/j.jcta.2006.08.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

McMullen, P. y E. Schulte. "Regular Polytopes in Ordinary Space". Discrete & Computational Geometry 17, n.º 4 (junio de 1997): 449–78. http://dx.doi.org/10.1007/pl00009304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Pellicer, Daniel. "CPR graphs and regular polytopes". European Journal of Combinatorics 29, n.º 1 (enero de 2008): 59–71. http://dx.doi.org/10.1016/j.ejc.2007.01.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

McMullen, Peter. "Lattices compatible with regular polytopes". European Journal of Combinatorics 29, n.º 8 (noviembre de 2008): 1925–32. http://dx.doi.org/10.1016/j.ejc.2008.01.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

McMullen, Peter. "Realizations of regular polytopes, III". Aequationes mathematicae 82, n.º 1-2 (3 de febrero de 2011): 35–63. http://dx.doi.org/10.1007/s00010-010-0063-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

McMullen, Peter. "Realizations of regular polytopes, IV". Aequationes mathematicae 87, n.º 1-2 (26 de febrero de 2013): 1–30. http://dx.doi.org/10.1007/s00010-013-0187-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

McMullen, P. y B. Monson. "Realizations of regular polytopes, II". aequationes mathematicae 65, n.º 1 (febrero de 2003): 102–12. http://dx.doi.org/10.1007/s000100300007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

B�r�czky, Jr., K. y M. Henk. "Random projections of regular polytopes". Archiv der Mathematik 73, n.º 6 (1 de diciembre de 1999): 465–73. http://dx.doi.org/10.1007/s000130050424.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Wei-Juan. "Some simplifications of the intersection condition of chiral form for polytopes". Journal of Algebra and Its Applications 18, n.º 11 (19 de agosto de 2019): 1950203. http://dx.doi.org/10.1142/s0219498819502037.

Texto completo
Resumen
To determine if a poset of type [Formula: see text] is a directly regular or chiral polytope, it is necessary to test whether or not its rotation group (as a quotient of the orientation-preserving subgroup of the Coxeter group [Formula: see text]) satisfies the so-called intersection condition of chiral form. However, due to the fact that many cases need to be checked, this process is often very tedious and takes much time. In this paper, under certain circumstances, we give some simplifications for checking the intersection condition, which leads to certain constructions for directly regular or chiral polytopes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Monson, B. y Egon Schulte. "Modular Reduction in Abstract Polytopes". Canadian Mathematical Bulletin 52, n.º 3 (1 de septiembre de 2009): 435–50. http://dx.doi.org/10.4153/cmb-2009-047-7.

Texto completo
Resumen
AbstractThe paper studies modular reduction techniques for abstract regular and chiral polytopes, with two purposes in mind: first, to survey the literature about modular reduction in polytopes; and second, to apply modular reduction, with moduli given by primes in ℤ[τ] (with τ the golden ratio), to construct new regular 4-polytopes of hyperbolic types ﹛3, 5, 3﹜ and ﹛5, 3, 5﹜ with automorphism groups given by finite orthogonal groups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kabluchko, Zakhar y Hauke Seidel. "Convex cones spanned by regular polytopes". Advances in Geometry 22, n.º 2 (1 de abril de 2022): 245–67. http://dx.doi.org/10.1515/advgeom-2021-0041.

Texto completo
Resumen
Abstract We study three families of polyhedral cones whose sections are regular simplices, cubes, and crosspolytopes. We compute solid angles and conic intrinsic volumes of these cones. We show that several quantities appearing in stochastic geometry can be expressed through these conic intrinsic volumes. A list of such quantities includes internal and external solid angles of regular simplices and crosspolytopes, the probability that a (symmetric) Gaussian random polytope or the Gaussian zonotope contains a given point, the expected number of faces of the intersection of a regular polytope with a random linear subspace passing through its centre, and the expected number of faces of the projection of a regular polytope onto a random linear subspace.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Katunin, Andrzej. "Fractals based on regular convex polytopes". Scientific Research of the Institute of Mathematics and Computer Science 11, n.º 2 (junio de 2012): 53–62. http://dx.doi.org/10.17512/jamcm.2012.2.06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

McMullen, Peter. "Quasi-Regular Polytopes of Full Rank". Discrete & Computational Geometry 66, n.º 2 (6 de julio de 2021): 475–509. http://dx.doi.org/10.1007/s00454-021-00304-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Montagard, Pierre-Louis y Nicolas Ressayre. "Regular lattice polytopes and root systems". Bulletin of the London Mathematical Society 41, n.º 2 (24 de febrero de 2009): 227–41. http://dx.doi.org/10.1112/blms/bdn120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

McMullen, Peter y Egon Schulte. "Locally unitary groups and regular polytopes". Advances in Applied Mathematics 29, n.º 1 (julio de 2002): 1–45. http://dx.doi.org/10.1016/s0196-8858(02)00001-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Filliman, P. "The largest projections of regular polytopes". Israel Journal of Mathematics 64, n.º 2 (junio de 1988): 207–28. http://dx.doi.org/10.1007/bf02787224.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

McMullen, P. y E. Schulte. "Regular polytopes from twisted Coxeter groups". Mathematische Zeitschrift 201, n.º 2 (junio de 1989): 209–26. http://dx.doi.org/10.1007/bf01160678.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Proskurnikov, A. V. y Yu R. Romanovskii. "Regular triangulations of non-convex polytopes". Russian Mathematical Surveys 57, n.º 4 (31 de agosto de 2002): 817–18. http://dx.doi.org/10.1070/rm2002v057n04abeh000546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Akopyan, Arseniy y Roman Karasev. "Inscribing a regular octahedron into polytopes". Discrete Mathematics 313, n.º 1 (enero de 2013): 122–28. http://dx.doi.org/10.1016/j.disc.2012.09.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Brehm, Ulrich, Wolfgang Kühnel y Egon Schulte. "Manifold structures on abstract regular polytopes". Aequationes Mathematicae 49, n.º 1 (febrero de 1995): 12–35. http://dx.doi.org/10.1007/bf01827926.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Pellicer, Daniel. "Extensions of dually bipartite regular polytopes". Discrete Mathematics 310, n.º 12 (junio de 2010): 1702–7. http://dx.doi.org/10.1016/j.disc.2009.11.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

McMullen, Peter. "Regular Polytopes of Nearly Full Rank". Discrete & Computational Geometry 46, n.º 4 (9 de marzo de 2011): 660–703. http://dx.doi.org/10.1007/s00454-011-9335-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía