Literatura académica sobre el tema "Regular polytopes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Regular polytopes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Regular polytopes"
Lalvani, Haresh. "Higher Dimensional Periodic Table Of Regular And Semi-Regular Polytopes". International Journal of Space Structures 11, n.º 1-2 (abril de 1996): 155–71. http://dx.doi.org/10.1177/026635119601-222.
Texto completoSchulte, Egon y Asia Ivić Weiss. "Free Extensions of Chiral Polytopes". Canadian Journal of Mathematics 47, n.º 3 (1 de junio de 1995): 641–54. http://dx.doi.org/10.4153/cjm-1995-033-7.
Texto completoCONNOR, THOMAS, DIMITRI LEEMANS y MARK MIXER. "ABSTRACT REGULAR POLYTOPES FOR THE O'NAN GROUP". International Journal of Algebra and Computation 24, n.º 01 (febrero de 2014): 59–68. http://dx.doi.org/10.1142/s0218196714500052.
Texto completoComes, Jonathan. "Regular Polytopes". Mathematics Enthusiast 1, n.º 2 (1 de octubre de 2004): 30–37. http://dx.doi.org/10.54870/1551-3440.1007.
Texto completoHou, Dong-Dong, Yan-Quan Feng y Dimitri Leemans. "Existence of regular 3-polytopes of order 2𝑛". Journal of Group Theory 22, n.º 4 (1 de julio de 2019): 579–616. http://dx.doi.org/10.1515/jgth-2018-0155.
Texto completoBoya, Luis J. y Cristian Rivera. "On Regular Polytopes". Reports on Mathematical Physics 71, n.º 2 (abril de 2013): 149–61. http://dx.doi.org/10.1016/s0034-4877(13)60026-9.
Texto completoCuypers, Hans. "Regular quaternionic polytopes". Linear Algebra and its Applications 226-228 (septiembre de 1995): 311–29. http://dx.doi.org/10.1016/0024-3795(95)00149-l.
Texto completoMcMullen, Peter y Egon Schulte. "Flat regular polytopes". Annals of Combinatorics 1, n.º 1 (diciembre de 1997): 261–78. http://dx.doi.org/10.1007/bf02558480.
Texto completoCoxeter, H. S. M. "Regular and semi-regular polytopes. II". Mathematische Zeitschrift 188, n.º 4 (diciembre de 1985): 559–91. http://dx.doi.org/10.1007/bf01161657.
Texto completoCoxeter, H. S. M. "Regular and semi-regular polytopes. III". Mathematische Zeitschrift 200, n.º 1 (marzo de 1988): 3–45. http://dx.doi.org/10.1007/bf01161745.
Texto completoTesis sobre el tema "Regular polytopes"
Duke, Helene. "A Study of the Rigidity of Regular Polytopes". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366271197.
Texto completoBeteto, Marco Antonio Leite. "Less conservative conditions for the robust and Gain-Scheduled LQR-state derivative controllers design /". Ilha Solteira, 2019. http://hdl.handle.net/11449/180976.
Texto completoResumo: Neste trabalho é proposta a resolução do problema do regulador linear quadrático (Linear Quadratic Regulator - LQR) via desigualdades matriciais lineares (Linear Matrix Inequalities - LMIs) para sistemas lineares e invariantes no tempo sujeitos a incertezas politópicas, bem como para sistemas lineares sujeitos a parâmetros variantes no tempo (Linear Parameter Varying - LPV). O projeto dos controladores é baseado na realimentação derivativa. A escolha da realimentação derivativa se dá devido à sua fácil implementação em certas aplicações como, por exemplo, no controle de vibrações. Os sinais usados na realimentação são aceleração e velocidade, sendo obtidos por meio de acelerômetros. Por meio do método proposto é possível obter condições LMIs para a síntese de controladores que garantam a estabilização do sistema em malha fechada, sendo que os controladores possuem desempenho otimizado. Para a formulação das condições LMIs, uma função de Lyapunov do tipo quadrática é utilizada. Exemplos teóricos e simulações são utilizados como forma de validação dos métodos propostos, além de mostrar que os novos resultados apresentam condições menos conservadoras. Além disso, ao final é apresentada uma implementação prática em um sistema de suspensão ativa, produzida pela Quanser®.
Abstract: The resolution of linear quadratic regulator (LQR) problem via linear matrix inequalities (LMIs) for linear time-invariant systems subject to polytopic uncertainties, as linear systems subjects to linear parameter varying (LPV), is proposed in this work. The controllers' designs are based on the state derivative feedback. The aim to the choice of the state derivative feedback is your easy implementation in a class of mechanical systems, such as in vibration control, for example. The signals used for feedback are acceleration and velocity, it is obtained by means of accelerometers. Through the proposed method it is possible to obtain LMIs conditions for the synthesis of controllers that guarantee the stabilisation of the closed-loop system, being that the controllers have optimised performance. For the LMIs conditions formulations, a Lyapunov function of type quadratic is used. As a form of validation, theoretical examples and simulations are performed, besides to show that the new results are less conservative. Furthermore, a practical implementation in an active suspension system, produced by Quanser®, is performed.
Mestre
Bruni, Matteo. "Incremental Learning of Stationary Representations". Doctoral thesis, 2021. http://hdl.handle.net/2158/1237986.
Texto completoLibros sobre el tema "Regular polytopes"
Coxeter, H. S. M. Regular complex polytopes. 2a ed. Cambridge [England]: Cambridge University Press, 1991.
Buscar texto completoChang, Peter Chung Yuen. Quantum field theory on regular polytopes. Manchester: University of Manchester, 1993.
Buscar texto completoMostly surfaces. Providence, R.I: American Mathematical Society, 2011.
Buscar texto completoCoxeter, H. S. M. Regular Polytopes. Dover Publications, Incorporated, 2012.
Buscar texto completoCoxeter, H. S. M. Regular Polytopes. Dover Publications, Incorporated, 2012.
Buscar texto completoCoxeter, H. S. M. Regular Polytopes. Dover Publications, 2013.
Buscar texto completoDoran, B., Egon Schulte, M. Ismail, Peter McMullen y G. C. Rota. Abstract Regular Polytopes. Cambridge University Press, 2004.
Buscar texto completoMcmullen, Peter y Egon Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.
Buscar texto completoMcMullen, Peter. Geometric Regular Polytopes. University of Cambridge ESOL Examinations, 2020.
Buscar texto completoSchulte, Egon y Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Regular polytopes"
Johnson, D. L. "Regular Polytopes". En Springer Undergraduate Mathematics Series, 155–66. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0243-4_12.
Texto completoMcMullen, Peter. "Rigidity of Regular Polytopes". En Rigidity and Symmetry, 253–78. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0781-6_13.
Texto completoMcMullen, Peter. "Modern Developments in Regular Polytopes". En Polytopes: Abstract, Convex and Computational, 97–124. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6_5.
Texto completoLee, C. "Regular triangulations of convex polytopes". En DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 443–56. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/004/35.
Texto completoDe Loera, Jesús A., Jörg Rambau y Francisco Santos. "Regular Triangulations and Secondary Polytopes". En Triangulations, 209–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12971-1_5.
Texto completoSchulte, Egon. "Classification of Locally Toroidal Regular Polytopes". En Polytopes: Abstract, Convex and Computational, 125–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6_6.
Texto completoMcMullen, Peter. "New Regular Compounds of 4-Polytopes". En Bolyai Society Mathematical Studies, 307–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57413-3_12.
Texto completoSchulte, Egon. "Regular Incidence Complexes, Polytopes, and C-Groups". En Discrete Geometry and Symmetry, 311–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78434-2_18.
Texto completoDowns, Martin y Gareth A. Jones. "Möbius Inversion in Suzuki Groups and Enumeration of Regular Objects". En Symmetries in Graphs, Maps, and Polytopes, 97–127. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30451-9_5.
Texto completoBanchoff, Thomas F. "Torus Decompostions of Regular Polytopes in 4-space". En Shaping Space, 257–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-387-92714-5_20.
Texto completoActas de conferencias sobre el tema "Regular polytopes"
Shahid, Salman, Sakti Pramanik y Charles B. Owen. "Minimum bounding boxes for regular cross-polytopes". En the 27th Annual ACM Symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2245276.2245447.
Texto completoBueno, Jose Nuno A. D., Kaio D. T. Rocha, Lucas B. Marcos y Marco H. Terra. "Mode-Independent Regulator for Polytopic Markov Jump Linear Systems*". En 2022 30th Mediterranean Conference on Control and Automation (MED). IEEE, 2022. http://dx.doi.org/10.1109/med54222.2022.9837134.
Texto completo