Literatura académica sobre el tema "Refractive index variation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Refractive index variation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Refractive index variation"
Paroha, P. P. "Variation in refractive index of sugar solution with concentration using Newton’s rings". YMER Digital 21, n.º 06 (29 de junio de 2022): 1129–32. http://dx.doi.org/10.37896/ymer21.06/a8.
Texto completoTwu, Ruey-Ching y Chia-Wei Hsueh. "Phase interrogation birefringent-refraction sensor for refractive index variation measurements". Sensors and Actuators A: Physical 253 (enero de 2017): 85–90. http://dx.doi.org/10.1016/j.sna.2016.11.029.
Texto completoSediq, Khalid N., Fahmi F. Muhammadsharif, Simko O. Ramadan y Shalaw Z. Sedeeq. "Design and Study of a Nanocavity-based One-dimensional Photonic Crystal for Potential Applications in Refractive Index Sensing". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, n.º 2 (9 de octubre de 2023): 95–98. http://dx.doi.org/10.14500/aro.11298.
Texto completoKim, Young L., Joseph T. Walsh, Thomas K. Goldstick y Matthew R. Glucksberg. "Variation of corneal refractive index with hydration". Physics in Medicine and Biology 49, n.º 5 (13 de febrero de 2004): 859–68. http://dx.doi.org/10.1088/0031-9155/49/5/015.
Texto completoSingh, Nageshwar. "Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium". International Journal of Optics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/525142.
Texto completoRUOFF, ARTHUR L. y KOUROS GHANDEHARI. "THE REFRACTIVE INDEX AT THE CENTER OF THE SURFACE OF PRESSURIZED DIAMOND ANVIL TIPS". Modern Physics Letters B 07, n.º 15 (30 de junio de 1993): 1039–43. http://dx.doi.org/10.1142/s021798499300103x.
Texto completoRUOFF, ARTHUR L. y KOUROS GHANDEHARI. "THE REFRACTIVE INDEX OF HYDROGEN AS A FUNCTION OF PRESSURE". Modern Physics Letters B 07, n.º 13n14 (20 de junio de 1993): 907–11. http://dx.doi.org/10.1142/s0217984993000904.
Texto completoNaoi, Yusaku. "Sensor for refractive index variation of an optical surface using a high-refractive-index waveguide". Optical Engineering 46, n.º 10 (1 de octubre de 2007): 104601. http://dx.doi.org/10.1117/1.2799182.
Texto completoSzekeres, A., K. Christova y A. Paneva. "Stress-induced refractive index variation in dry SiO2". Philosophical Magazine B 65, n.º 5 (mayo de 1992): 961–66. http://dx.doi.org/10.1080/13642819208217913.
Texto completoLagomarsino, S., P. Olivero, S. Calusi, D. Gatto Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini y M. Vannoni. "Complex refractive index variation in proton-damaged diamond". Optics Express 20, n.º 17 (9 de agosto de 2012): 19382. http://dx.doi.org/10.1364/oe.20.019382.
Texto completoTesis sobre el tema "Refractive index variation"
Stephenson, David. "Modeling variation in the refractive index of optical glasses /". Online version of thesis, 1990. http://hdl.handle.net/1850/10952.
Texto completoStein, Benedikt. "Plasmonic devices for surface optics and refractive index sensing". Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00849967.
Texto completoDe, Freitas Jolyon Mark O. "Interferometric characterisation of refractive index variations in vitreous silica". Thesis, University of Aberdeen, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387257.
Texto completoAu, L. B. "Wave propagation and grating formation in photorefractive materials". Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235016.
Texto completoModaresialam-Bochet, Mehrnaz. "Fabrication of dielectric nanostructures by nano imprint lithography and sol-gel chemistry for optical applications". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0345.
Texto completoThe purpose of this thesis is to develop methods to elaborate nanostructured metasurfaces by combining sol-gel chemistry and nano imprint lithography (soft-NIL), which are of relevant scientific and technological interest as they inscribe themselves in the general trend of developing affordable and time-saving processes, using biocompatible and non-toxic materials. Firstly, we showcase the elaboration of new efficient antireflection coatings made of water-repellent methylated silica nipple-dimple nano-architectures (pillars and holes). The interest of these results relies on the possibility to drastically reduce reflection in a broad spectral interval and within a broad acceptance angle of the incident light, rendering them adapted to photovoltaic, glass covers, laser windows, and much more. Furthermore, these nano-materials feature a high chemical, thermal and mechanical stability. Secondly, a highly sensitive optical gas sensor was elaborated based on TiO2 nanopatterns embedded in a thin microporous hybrid-SiO2 sensitive coating. The reflectivity of the layer has then been measured in the visible range with increasing vapor pressure. The measured sensing performances are sensitivity S up to 4500 nm/RIU (0.2 nm/ppm), reflection intensity changes up to R* = 17 (0.55×10-3 R/ppm), FOM up to 12, with a Q-Factor of 4 for a specific wavelength, which is compatible with sub-ppm gas detection by simple specular reflection. Finally, a novel generation of dielectric 3D stack nanostructured patterns (e.g. TiO2 pillars - mesoporous SiO2 - TiO2 pillars) was developed as an innovative optical system that has never been experimentally studied before
Büttner, Lars, Felix Schmieder, Martin Teich, Nektarios Koukourakis y Jürgen Czarske. "Application of adaptive optics for flexible laser induced ultrasound field generation and uncertainty reduction in measurements". SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35156.
Texto completoJovan, Bajčetić. "Modelovanje uticaja intenzivnih promena Sunčevog zračenja na prostiranje radio talasa". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=102468&source=NDLTD&language=en.
Texto completoThis thesis presents the research results of intensive solar radiation variationinfluence on radio propagation. The first part of presented results is related to theeffects of non-periodic radiation within X-ray wavelength during Solar X-flare.Modelling of ionosphere D-layer medium is performed during all time duration ofadditional ionization energy, as well as radio propagation characteristics within thismedium. The second part of the measured results presents periodic variation ofreceiving microwave radio signal level of experimental Line-of-site communicationduring the morning hours. It is shown that this variation is highly correlated withgeomagnetic field component values variation and that is caused by the Sunappearance on the horizon. Based on the experimentally collected results, the modelthat describes this variation during morning hours is proposed.
Huang, Wei-Yin y 黃唯音. "The influence of refractive index variation on the performance of ARROW devices". Thesis, 1997. http://ndltd.ncl.edu.tw/handle/67794598628038099020.
Texto completo國立交通大學
電子工程學系
85
In this thesis, we develop the necessary methods to analyze the influence of the refractive index variation for the antiresonant reflectingoptical waveguide (ARROW) devices. For the two dimentional slab ARROW, we usethe characteristic matrix method and beam propagation method (BPM); then compare their results. It can be seen that the performance of a slab ARROW isvery sensitive to the refractive index variation, and we can use this characteristic in dual slab ARROW to design optical switches or various sensors in the future. For the three dimentional strip ARROW, we use the eigenvalue method, the effective index method, and BPM; then compare their results.It can be seen that the performance of a strip ARROW is very good, and its maximum coupling efficiency will not significantly be influenced by the refractive index variation. The results give a useful reference for the designand fabrication of the ARROW devices.
Lin, You-Shen y 林祐紳. "Full-field Refractive Index Variation Measurement Based on Phase-type Angle-deviation Method". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/p4n74w.
Texto completo國立虎尾科技大學
光電與材料科技研究所
103
We proposed the phase-type angle-deviation method to measure the full-field of refractive index variation of a liquid.The phase measurement is based on phase-shift interferometry and the use of surface plasmon resonance (SPR) sensor. The phase shift between the s-and p-polarizations due to the angle deviation in SPR sensor is caused by the refractive index variation. The method can plot the full-field image of refractive index in short time and realize the liquid flow status. The SPR sensor can enhance the phase sensitivity and the refractive index resolution can be better than 10-8(RIU).
Fan, Hsin-Chen y 范新辰. "Utilizing the laser swept source to detect the micro-variation of refractive index in devices". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3v89p7.
Texto completo國立交通大學
光電系統研究所
106
Refractive index is one of the most important physical parameters in a substance. Once we grasp the refractive index of a substance, then we can understand the optical characteristics, concentration, purity or dispersion of the substance, even the temperature of the object to a certain extent. In this paper, we choose microfluidic channel, which has the advantage of the thinness that can make the Fabry–Pérot phenomenon more obviously, as a container for measuring the small refractive index changes produced by different concentrations of the solution. On the other hand, we use a homemade laser swept source equipped with a galvano mirror, so we can flexibly adjust the scanning frequency in the resonant cavity, and combine a data acquisition card with a high-speed sampling rate to greatly increase the number of sampling points scanned, thereby improving the accuracy of the refractive index which can be calculated. In addition, it’s a non-contacting method of measurement, which can reduce the weight or temperature limitation of the object to be tested. It can also measure a wide range of refractive index. In conclusion, this method for measuring the refractive index is quite ideal.
Libros sobre el tema "Refractive index variation"
Center, Lewis Research, ed. Effect of refractive index variation on two-wavelength interferometry for fluid measurements. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Buscar texto completoCenter, Lewis Research, ed. Effect of refractive index variation on two-wavelength interferometry for fluid measurements. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Buscar texto completoJoo, Kyung Ro. Effects of variation of index of refraction of atmosphere on Cerenkov radiation. 1985.
Buscar texto completoBirch, K. P. Evaluation of the Effect of Variations in the Refractive Index of Air Upon the Uncertainty of Industrial Length Measurements. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1992.
Buscar texto completoCapítulos de libros sobre el tema "Refractive index variation"
Tabassum, Rana y Ravi Kant. "Plasmonic Probing of Refractive Index Variations Using MWCNT@Ta2O5 Core–shell Nanoparticles". En Springer Proceedings in Physics, 339–45. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_34.
Texto completoNewnham, Robert E. "Dispersion and absorption". En Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0028.
Texto completoNewnham, Robert E. "Photoelasticity and acousto-optics". En Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0029.
Texto completoMeshginqalam, Bahar, Mohammad Taghi Ahmadi, Hamid Toloue Ajili Tousi, Arash Sabatyan y Anthony Centeno. "Surface Plasmon Resonance-Based Sensor Modeling". En Handbook of Research on Nanoelectronic Sensor Modeling and Applications, 361–94. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0736-9.ch014.
Texto completoHuaraca Aparco, Rosa, María del Carmen Delgado Laime, Fidelia Tapia Tadeo, Henrry Wilfredo Agreda Cerna, Edwin Mescco Cáceres, Juan Alarcón Camacho, Hans Yuri Godoy Medina et al. "Bioactive Compounds and Antioxidant Activity of Essential Oil of Species of the Genus Tagetes". En Recent Developments in Antioxidants From Natural Sources [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109254.
Texto completoAyub Hamdani, Mursal y Gausia Qazi. "Modelling Fabrication Variability in Silicon Photonic Devices". En Photonic Materials: Recent Advances and Emerging Applications, 265–83. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010016.
Texto completoGahlot, Ajay Pratap Singh. "Optical Dispersion: Variation of Refractive Index of Polypyrrole and SnO2 Nanocomposite Thin Film with Incident Wavelength". En Fundamental Research and Application of Physical Science Vol. 7, 75–81. B P International (a part of SCIENCEDOMAIN International), 2023. http://dx.doi.org/10.9734/bpi/fraps/v7/5977c.
Texto completoShekari Firouzjaei, Ali, Seyed Salman Afghahi y Ali-Asghar Ebrahimi Valmoozi. "Emerging Trends, Applications, and Fabrication Techniques in Photonic Crystal Technology". En Recent Advances and Trends in Photonic Crystal Technology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1002455.
Texto completoMasters, Barry R. y T. C. So Peter. "Nonlinear Microscopy Applied to Dermatology". En Handbook of Biomedical Nonlinear Optical Microscopy, 797–824. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195162608.003.0032.
Texto completoActas de conferencias sobre el tema "Refractive index variation"
Pagano, Robert J., Paul K. Manhart y Paul T. Sherman. "Measurement of refractive index and dispersion in axial gradient material using prism refractometry". En Gradient-Index Optical Imaging Systems. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/giois.1994.gwa3.
Texto completoNorland, Richard. "Temporal Variation of the Refractive Index in Coastal Waters". En 2006 International Radar Symposium. IEEE, 2006. http://dx.doi.org/10.1109/irs.2006.4338040.
Texto completoHoefer, Carolyn S. "Thermal Variation Of The Refractive Index In Optical Materials". En 30th Annual Technical Symposium, editado por Larry G. DeShazer. SPIE, 1987. http://dx.doi.org/10.1117/12.939628.
Texto completoLi, Wei, Yitao Liang y Maixia Fu. "The radio propagation affected by variation of refractive index". En 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). IEEE, 2009. http://dx.doi.org/10.1109/mape.2009.5355602.
Texto completoGhatak, Ajoy K., I. C. Goyal y Rajeev Jindal. "Modes of waveguides with sinusoidal variation of refractive index". En International Conference on Fiber Optics and Photonics: Selected Papers from Photonics India '98, editado por Anurag Sharma, Banshi D. Gupta y Ajoy K. Ghatak. SPIE, 1999. http://dx.doi.org/10.1117/12.347991.
Texto completoHeo, Duchang, Yun-Seok Kwak, Tae-kyung Kim y Young-Wook Choi. "Tapered laser diode with linearly effective-refractive-index variation waveguide". En SPIE LASE, editado por Mark S. Zediker. SPIE, 2015. http://dx.doi.org/10.1117/12.2080439.
Texto completoHiware, Sameer, Pradyot Porwal, Rajbabu Velmurugan y Subhasis Chaudhuri. "Modeling of PSF for refractive index variation in fluorescence microscopy". En 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6115879.
Texto completoNasiri Avanaki, Mohammad Reza, Steven Daveluy, Darius Mehregan, Zahra Turani, rayyan Manwar y emad fatemizadeh. "Compensation of refractive index variation in optical coherence tomography images". En Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, editado por Joseph A. Izatt y James G. Fujimoto. SPIE, 2019. http://dx.doi.org/10.1117/12.2510561.
Texto completoCarniglia, C. K., K. N. Schrader, P. A. O'Connell y S. R. Tuenge. "Refractive Index Determination using an Orthogonalized Dispersion Equation". En Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oic.1988.wc3.
Texto completoFeise, D., G. Blume, Chr Kaspari, K. Paschke y G. Erbert. "Variation of refractive index step of 635nm ridge waveguide lasers for optimized index guiding". En SPIE LASE. SPIE, 2011. http://dx.doi.org/10.1117/12.873397.
Texto completoInformes sobre el tema "Refractive index variation"
Sommargren, G. E., D. W. Phillion, M. A. Johnson y L. S. Bradsher. Measurement of the Variations in Thickness and Refractive Index of NIF Crystals. Office of Scientific and Technical Information (OSTI), enero de 2002. http://dx.doi.org/10.2172/15002093.
Texto completoOstashev, Vladimir, Michael Muhlestein y D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/42043.
Texto completo