Literatura académica sobre el tema "Réflectance lidar de surface"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Réflectance lidar de surface".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Réflectance lidar de surface"
Rudant, Jean-Paul y Pierre-Louis Frison. "Lettre : Existe-t-il des relations formelles entre coefficients de diffusion radar et facteurs de réflectance en optique ?" Revue Française de Photogrammétrie et de Télédétection, n.º 219-220 (17 de enero de 2020): 29–31. http://dx.doi.org/10.52638/rfpt.2019.461.
Texto completoLafrance, Bruno, Xavier Lenot, Caroline Ruffel, Patrick Cao y Thierry Rabaute. "Outils de prétraitements des images optiques Kalideos". Revue Française de Photogrammétrie et de Télédétection, n.º 197 (21 de abril de 2014): 10–16. http://dx.doi.org/10.52638/rfpt.2012.78.
Texto completoLIN, C. S. "Ocean surface profiling lidar". International Journal of Remote Sensing 17, n.º 13 (septiembre de 1996): 2667–80. http://dx.doi.org/10.1080/01431169608949098.
Texto completoCHAMP, M. y P. COLONNA. "Importance de l’endommagement de l’amidon dans les aliments pour animaux". INRAE Productions Animales 6, n.º 3 (28 de junio de 1993): 185–98. http://dx.doi.org/10.20870/productions-animales.1993.6.3.4199.
Texto completoBelov, M. L., A. M. Belov, V. A. Gorodnichev y S. V. Alkov. "Monopulse lidar Earth surface sounding method". IOP Conference Series: Materials Science and Engineering 537 (17 de junio de 2019): 022047. http://dx.doi.org/10.1088/1757-899x/537/2/022047.
Texto completoMandlburger, Gottfried y Boris Jutzi. "On the Feasibility of Water Surface Mapping with Single Photon LiDAR". ISPRS International Journal of Geo-Information 8, n.º 4 (10 de abril de 2019): 188. http://dx.doi.org/10.3390/ijgi8040188.
Texto completoYang, Song, Qian Sun y Yongchao Zheng. "Simulation Effects of Surface Geometry and Water Optical Properties on Hydrographic Lidar Returns". EPJ Web of Conferences 237 (2020): 08020. http://dx.doi.org/10.1051/epjconf/202023708020.
Texto completoSedláček, Jozef, Ondřej Šesták y Miroslava Sliacka. "Comparison of Digital Elevation Models by Visibility Analysis in Landscape". Acta Horticulturae et Regiotecturae 19, n.º 2 (1 de noviembre de 2016): 28–31. http://dx.doi.org/10.1515/ahr-2016-0007.
Texto completoWebster, Tim, Candace MacDonald, Kevin McGuigan, Nathan Crowell, Jean-Sebastien Lauzon-Guay y Kate Collins. "Calculating macroalgal height and biomass using bathymetric LiDAR and a comparison with surface area derived from satellite data in Nova Scotia, Canada". Botanica Marina 63, n.º 1 (25 de febrero de 2020): 43–59. http://dx.doi.org/10.1515/bot-2018-0080.
Texto completoTelling, Jennifer, Craig Glennie, Andrew Fountain y David Finnegan. "Analyzing Glacier Surface Motion Using LiDAR Data". Remote Sensing 9, n.º 3 (17 de marzo de 2017): 283. http://dx.doi.org/10.3390/rs9030283.
Texto completoTesis sobre el tema "Réflectance lidar de surface"
Zabukovec, Antonin. "Apport des mesures de la plateforme CALIPSO pour l’étude des sources et des propriétés optiques des aérosols en Sibérie". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS393.
Texto completoKnowledge of the distribution and physico-chemical properties of aerosol particles in the troposphere has been identified by the Intergovernmental Panel on Climate Change (IPCC) as the main source of uncertainty in the study of climate change. Characterization of the types, optical properties and vertical distribution of aerosols at the regional scale is needed to reduce this source of uncertainty and some areas such as Siberia are still poorly documented. Aerosol concentrations in Siberia depend on natural sources, such as seasonal forest fires or northward transport of desert dust, but also on anthropogenic sources such as those from hydrocarbon mining areas or long-range transport of emissions from northern China. In order to contribute to the improvement of this characterization of aerosol sources in Siberia, we first analyzed the measurements of two airborne campaigns carried out over distances of several thousand km in July 2013 and June 2017. The aircraft was equipped with a back-scattering lidar at 532 nm, as well as in-situ measurements of carbon monoxide (CO), black carbon (BC) and aerosol size distributions. These observations were studied in synergy with those of the CALIOP spaceborne lidar and the MODIS and IASI missions. The altitude range of the aerosol layers and the role of age on the optical properties (optical thickness (AOD532), depolarization, color ratio) are discussed for each type of aerosol. The results of a flight over the gas extraction regions corresponded to the highest AOD532 and higher BC concentrations than the emissions from urban areas and allowed an estimation of the lidar ratio of these aerosol plumes poorly documented in the literature. The second part of the work consisted in proposing an alternative to the indirect restitution of the AOD532 by the CALIOP instrument from the inversion of the attenuated back-scattering lidar signal. This method uses the surface reflectance of the CALIOP lidar signal and has already been used over oceans or optically opaque liquid water clouds to calculate an AOD value. In this work, we have thus developed and evaluated an AOD restitution from the CALIOP surface reflectance for continental areas. Two methodologies were used to determine the surface lidar reflectance not attenuated by aerosols: (i) selection of CALIOP observations under clear sky conditions over 7 years of observation (ii) extrapolation of the linearity relationship between attenuated surface lidar reflectance and atmospheric transmission. If these two methods give good results in areas of low surface lidar reflectance (< 0.75sr-1), the first method is not usable in desert areas. The use of these LIDAR AOD measured directly over continental surfaces improves the bias (|ME| < 0.034) and dispersion (< 0.145) compared to MODIS observations. This greatly improves the results of the CALIOP-MODIS comparisons obtained with the indirect restitution of the AODs an analysis of the vertical profiles of attenuated lidar backscatter with a bias < 0.174 and dispersion < 0.234
Morel, Jules. "Surface reconstruction based on forest terrestrial LiDAR data". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0039/document.
Texto completoIn recent years, the capacity of LiDAR technology to capture detailed information about forests structure has attracted increasing attention in the field of forest science. In particular, the terrestrial LiDAR arises as a promising tool to retrieve geometrical characteristics of trees at a millimeter level.This thesis studies the surface reconstruction problem from scattered and unorganized point clouds, captured in forested environment by a terrestrial LiDAR. We propose a sequence of algorithms dedicated to the reconstruction of forests plot attributes model: the ground and the woody structure of trees (i.e. the trunk and the main branches). In practice, our approaches model the surface with implicit function build with radial basis functions to manage the homogeneity and handle the noise of the sample data points
Venkata, Srikanth y John Reagan. "Aerosol Retrievals from CALIPSO Lidar Ocean Surface Returns". MDPI AG, 2016. http://hdl.handle.net/10150/622759.
Texto completoSarma, Vaibhav Yuan Xiaohui. "Urban surface characterization using LiDAR and aerial imagery". [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12196.
Texto completoSarma, Vaibhav. "Urban surface characterization using LiDAR and aerial imagery". Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12196/.
Texto completoLe, Bras Aurélie. "Etude de l'état de surface des astéroïdes par spectroscopie infrarouge en réflectance". Paris 7, 2001. http://www.theses.fr/2001PA077139.
Texto completoAwadallah, Mahmoud Sobhy Tawfeek. "Image Analysis Techniques for LiDAR Point Cloud Segmentation and Surface Estimation". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73055.
Texto completoPh. D.
Flanagin, Maik. "The Hydraulic Spline: Comparisons of Existing Surface Modeling Techniques and Development of a Spline-Based Approach for Hydrographic and Topographic Surface Modeling". ScholarWorks@UNO, 2007. http://scholarworks.uno.edu/td/613.
Texto completoJack, Landy. "Characterization of sea ice surface topography using Light Detection and Ranging (LiDAR)". Wiley, 2014. http://hdl.handle.net/1993/31170.
Texto completoMay 2016
Mutlu, Muge. "Mapping surface fuels using LIDAR and multispectral data fusion for fire behavior modeling". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1118.
Texto completoLibros sobre el tema "Réflectance lidar de surface"
Theory of reflectance and emittance spectroscopy. Cambridge [England]: Cambridge University Press, 1993.
Buscar texto completoPersaud, Arlene S. Design beyond the visible spectrum: Leveraging scientific data to generate surface models for hyper-realistic visualization. 2010.
Buscar texto completoHapke, Bruce. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2009.
Buscar texto completoHapke, Bruce. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.
Buscar texto completoHapke, Bruce. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.
Buscar texto completoHapke, Bruce. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2011.
Buscar texto completoHapke, Bruce. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Réflectance lidar de surface"
Reagan, J. A., H. Liu y T. W. Cooley. "LITE Surface Returns: Assessment and Applications". En Advances in Atmospheric Remote Sensing with Lidar, 177–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_44.
Texto completoLi, Yongguo, Yuanrong Wang, Jia Xie y Kun Zhang. "Unmanned Surface Vehicle Target Detection Based on LiDAR". En Lecture Notes in Electrical Engineering, 112–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1095-9_11.
Texto completoAl-Durgham, M., G. Fotopoulos y C. Glennie. "On the Accuracy of LiDAR Derived Digital Surface Models". En Gravity, Geoid and Earth Observation, 689–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_90.
Texto completoLiu, Maohua, Xiubo Sun, Yue Shao y Yingchun You. "Surface Features Classification of Airborne Lidar Data Based on TerraScan". En Geo-informatics in Sustainable Ecosystem and Society, 185–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7025-0_19.
Texto completoHu, Hui, Tomas M. Fernandez-Steeger, Mei Dong y Rafig Azzam. "Deformation Monitoring and Recognition of Surface Mine Slope Using LiDAR". En Engineering Geology for Society and Territory - Volume 2, 451–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_73.
Texto completoMa, Jianfei, Ruoyang Song, Tao Han, Arturo Sanchez-Azofeifa y Anup Basu. "Poisson Surface Reconstruction from LIDAR for Buttress Root Volume Estimation". En Lecture Notes in Computer Science, 463–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54407-2_39.
Texto completoAbed, Fanar M. "Correlation Between Surface Modeling and Pulse Width of FWF-Lidar". En Advances in Remote Sensing and Geo Informatics Applications, 147–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01440-7_34.
Texto completoTrouillet, Vincent, Patrick Chazette, Jacques Pelon y Cyrille Flamant. "Assessment of the Oceanic Surface Reflectance by Airborne Lidar to Improve a Stable Inversion Technique". En Advances in Atmospheric Remote Sensing with Lidar, 47–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_12.
Texto completoMukherjee, Aritra, Sourya Dipta Das, Jasorsi Ghosh, Ananda S. Chowdhury y Sanjoy Kumar Saha. "Fast Geometric Surface Based Segmentation of Point Cloud from Lidar Data". En Lecture Notes in Computer Science, 415–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34869-4_45.
Texto completoZhao, Chunhui, Zhenhui Yi, Xiaolei Hou y Jinwen Hu. "Lidar-Artificial-Marker Odometry for a Surface Climbing Robot via Factor Graph". En Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022), 503–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0479-2_47.
Texto completoActas de conferencias sobre el tema "Réflectance lidar de surface"
Blanton, Hunter, Sean Grate y Nathan Jacobs. "Surface Modeling for Airborne Lidar". En IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323522.
Texto completoHerper, Markus, Stephan Gronenborn, Xi Gu, Johanna Kolb, Michael Miller y Holger Moench. "VECSEL for 3D LiDAR applications". En Vertical External Cavity Surface Emitting Lasers (VECSELs) IX, editado por Ursula Keller. SPIE, 2019. http://dx.doi.org/10.1117/12.2507740.
Texto completoChurch, Philip M., Justin Matheson, Brett Owens y Christopher Grebe. "Aerial and surface security applications using lidar". En Laser Radar Technology and Applications XXIII, editado por Monte D. Turner y Gary W. Kamerman. SPIE, 2018. http://dx.doi.org/10.1117/12.2304348.
Texto completoJain, Sohan L., B. C. Arya, Sachin D. Ghude, Arun K. Arora y Randhir K. Sinha. "Surface ozone measurements using differential absorption lidar". En Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, editado por Upendra N. Singh y Kohei Mizutani. SPIE, 2005. http://dx.doi.org/10.1117/12.578168.
Texto completoAmblard, Victor, Timothy P. Osedach, Arnaud Croux, Andrew Speck y John J. Leonard. "Lidar-Monocular Surface Reconstruction Using Line Segments". En 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561437.
Texto completoDisney, M. I., P. Lewis y M. Bouvet. "Quantifying Surface Reflectivity for Spaceborne Lidar Missions". En IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4778974.
Texto completoSheehan, Michael P., Julian Tachella y Mike E. Davies. "Surface Detection for Sketched Single Photon Lidar". En 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco54536.2021.9616208.
Texto completoMaillard, Jean-Michel, Eric Ruben, Prabhu Thiagarajan, Brian Caliva, Linda West y Robert Walker. "Lasertel VCSEL development progress for automotive lidar". En Vertical-Cavity Surface-Emitting Lasers XXIV, editado por Chun Lei y Luke A. Graham. SPIE, 2020. http://dx.doi.org/10.1117/12.2547523.
Texto completoWang, K., L. Yao y J. Lin. "Ground Surface Deformation Detection from Far Satellite SAR to UAV LiDAR and Terrestrial Lidar". En 5th Asia Pacific Meeting on Near Surface Geoscience & Engineering. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202378038.
Texto completoGuenther, Gary C., Paul E. LaRocque y W. Jeff Lillycrop. "Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar". En Ocean Optics XII, editado por Jules S. Jaffe. SPIE, 1994. http://dx.doi.org/10.1117/12.190084.
Texto completoInformes sobre el tema "Réflectance lidar de surface"
Andrews, James. Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range Data. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2009. http://dx.doi.org/10.21236/ada538391.
Texto completoCarlberg, Matthew A. Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2009. http://dx.doi.org/10.21236/ada538884.
Texto completoO'Dea, Annika, Nicholas Spore, Tanner Jernigan, Brittany Bruder, Ian Conery, Jessamin Straub y Katherine Brodie. 3D measurements of water surface elevation using a flash lidar camera. Engineer Research and Development Center (U.S.), agosto de 2023. http://dx.doi.org/10.21079/11681/47496.
Texto completoCarlberg, Matthew, James Andrews, Peiran Gao y Avideh Zakhor. Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data. Fort Belvoir, VA: Defense Technical Information Center, enero de 2009. http://dx.doi.org/10.21236/ada538860.
Texto completoHara, Tetsu. Analysis of Steep and Breaking Ocean Surface Waves Using Data from an Airborne Scanning Lidar System. Fort Belvoir, VA: Defense Technical Information Center, julio de 2003. http://dx.doi.org/10.21236/ada416563.
Texto completoStevens, C. W., N. Short y S. A. Wolfe. Seasonal surface displacement and highway embankment grade derived from InSAR and LiDAR, Highway 3 west of Yellowknife, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/291383.
Texto completoBerney, Ernest, Andrew Ward y Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), marzo de 2021. http://dx.doi.org/10.21079/11681/40042.
Texto completoGavillot, Y., J. Lonn, M. Stickney y A. Hidy. Quaternary slip rates and most recent surface rupture of the Bitterroot fault, western Montana. Montana Bureau of Mines and Geology, febrero de 2023. http://dx.doi.org/10.59691/vzpp8697.
Texto completoJanet Intrieri y Mathhew Shupe. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic. Office of Scientific and Technical Information (OSTI), enero de 2005. http://dx.doi.org/10.2172/877535.
Texto completoGavillot, Yann G. Quaternary fault map of Jefferson County, southwest Montana. Montana Bureau of Mines and Geology, noviembre de 2022. http://dx.doi.org/10.59691/vzim1555.
Texto completo