Artículos de revistas sobre el tema "Réduction active de vibration"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Réduction active de vibration.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Réduction active de vibration".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Elliott, Stephen J., Philip A. Nelson y Ian M. Stothers. "Active vibration control". Journal of the Acoustical Society of America 94, n.º 2 (agosto de 1993): 1177. http://dx.doi.org/10.1121/1.406937.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Harper, Mark F. L. "Active vibration control". Journal of the Acoustical Society of America 94, n.º 6 (diciembre de 1993): 3533. http://dx.doi.org/10.1121/1.407156.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Schilling, Hermann. "Active vibration damper". Journal of the Acoustical Society of America 99, n.º 2 (1996): 644. http://dx.doi.org/10.1121/1.414582.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Baker, E. Bruce. "Active vibration suppressor". Journal of the Acoustical Society of America 82, n.º 5 (noviembre de 1987): 1857. http://dx.doi.org/10.1121/1.395785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ichikawa, Hiroyuki y Takehiko Fushimi. "Active vibration insulator". Journal of the Acoustical Society of America 122, n.º 6 (2007): 3148. http://dx.doi.org/10.1121/1.2822942.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pinson, George T. "Active vibration isolator". Journal of the Acoustical Society of America 80, n.º 4 (octubre de 1986): 1280. http://dx.doi.org/10.1121/1.394450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yasuda, Takayoshi. "Active vibration insulator". Journal of the Acoustical Society of America 126, n.º 2 (2009): 933. http://dx.doi.org/10.1121/1.3204347.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yang, Dong-Ho, Moon-K. Kwak, Jung-Hoon Kim, Woon-Hwan Park y Sang-Hoon Oh. "Active Vibration Control Experiment on Automobile Using Active Vibration Absorber". Transactions of the Korean Society for Noise and Vibration Engineering 21, n.º 8 (20 de agosto de 2011): 741–51. http://dx.doi.org/10.5050/ksnve.2011.21.8.741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

R RASID, Syed Mamun, Takeshi MIZUNO, Masaya TAKASAKI, Yuji ISHINO, Masayuki HARA y Daisuke YAMAGUCHI. "Active Vibration Isolation System with an Active Dynamic Vibration Absorber". Proceedings of the Dynamics & Design Conference 2016 (2016): 422. http://dx.doi.org/10.1299/jsmedmc.2016.422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Karnopp, D. "Active and Semi-Active Vibration Isolation". Journal of Mechanical Design 117, B (1 de junio de 1995): 177–85. http://dx.doi.org/10.1115/1.2836452.

Texto completo
Resumen
In the five decades since the founding of the ASME Design Engineering Division, the important problem of vibration isolation has been attacked first through the design of passive spring-damper suspensions and later by the use of active and semi-active elements. This paper reviews the historical development of theoretical concepts necessary for the design of isolation systems and indicates how control theory began to influence vibration isolation in the last half of this period. Practical active and semi-active suspensions have only recently become possible with the advent of powerful but relatively inexpensive signal processors. To illustrate these developments for engineers who have not been intimately involved with active systems, only simple vibrational system models will be discussed, although some modern hardware will be shown which is now being applied to complex systems. Instead of attempting to review the many theoretical concepts which have been proposed for active systems, this article will focus on a relatively simple idea with which the author has been associated over the past thirty years; namely the “skyhook” damper. This idea came through purely theoretical studies but is now used in combination with other concepts in production suspension systems. Two quite different application areas will be discussed. The first involves stable platforms to provide extreme isolation for delicate manufacturing operations against seismic inputs and the second involves automotive suspensions. Although similar concepts are found in these two application areas, the widely varying requirements result in very different suspension hardware. The special case of the semi-active damper, which requires very little control power and is presently reaching production, will also be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Karnopp, D. "Active and Semi-Active Vibration Isolation". Journal of Vibration and Acoustics 117, B (1 de junio de 1995): 177–85. http://dx.doi.org/10.1115/1.2838660.

Texto completo
Resumen
In the five decades since the founding of the ASME Design Engineering Division, the important problem of vibration isolation has been attacked first through the design of passive spring-damper suspensions and later by the use of active and semi-active elements. This paper reviews the historical development of theoretical concepts necessary for the design of isolation systems and indicates how control theory began to influence vibration isolation in the last half of this period. Practical active and semi-active suspensions have only recently become possible with the advent of powerful but relatively inexpensive signal processors. To illustrate these developments for engineers who have not been intimately involved with active systems, only simple vibrational system models will be discussed, although some modern hardware will be shown which is now being applied to complex systems. Instead of attempting to review the many theoretical concepts which have been proposed for active systems, this article will focus on a relatively simple idea with which the author has been associated over the past thirty years; namely the “skyhook” damper. This idea came through purely theoretical studies but is now used in combination with other concepts in production suspension systems. Two quite different application areas will be discussed. The first involves stable platforms to provide extreme isolation for delicate manufacturing operations against seismic inputs and the second involves automotive suspensions. Although similar concepts are found in these two application areas, the widely varying requirements result in very different suspension hardware. The special case of the semi-active damper, which requires very little control power and is presently reaching production, will also be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Rouch, Keith E. "Active vibration control device". Journal of the Acoustical Society of America 94, n.º 2 (agosto de 1993): 1177. http://dx.doi.org/10.1121/1.406936.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Staple, Alan E. y Bruce A. MacDonald. "Active vibration control systems". Journal of the Acoustical Society of America 94, n.º 6 (diciembre de 1993): 3533. http://dx.doi.org/10.1121/1.407158.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Marshall, Phillip. "Active vibration isolation system". Journal of the Acoustical Society of America 94, n.º 6 (diciembre de 1993): 3532. http://dx.doi.org/10.1121/1.407184.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Walkowc, Janusz. "Active torsional vibration damper". Journal of the Acoustical Society of America 102, n.º 6 (1997): 3248. http://dx.doi.org/10.1121/1.420166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Sawada, Hideshi y Hisashi Sano. "Active vibration control system". Journal of the Acoustical Society of America 98, n.º 6 (diciembre de 1995): 3026. http://dx.doi.org/10.1121/1.413833.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Harper, Mark F. L. "Active control of vibration". Journal of the Acoustical Society of America 99, n.º 2 (1996): 643. http://dx.doi.org/10.1121/1.414580.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Sutcliffe, Sean G. C., Graham P. Eatwell y Stephen M. Hutchins. "Active control of vibration". Journal of the Acoustical Society of America 92, n.º 1 (julio de 1992): 627. http://dx.doi.org/10.1121/1.404093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sandercock, John R. "Active vibration isolation systems". Journal of the Acoustical Society of America 90, n.º 6 (diciembre de 1991): 3387. http://dx.doi.org/10.1121/1.401376.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ichikawa, Hiroyuki y Yoshinori Watanabe. "Active vibration damping device". Journal of the Acoustical Society of America 124, n.º 1 (2008): 25. http://dx.doi.org/10.1121/1.2960789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Huston, Dryver R. "Active vibration damping system". Journal of the Acoustical Society of America 126, n.º 6 (2009): 3383. http://dx.doi.org/10.1121/1.3274285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Hansen, Colin H. "Active control of vibration". Applied Acoustics 49, n.º 4 (diciembre de 1996): 419–20. http://dx.doi.org/10.1016/s0003-682x(97)84212-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Hannsen Su, Jen-Houne. "Passive-active vibration isolation". Journal of the Acoustical Society of America 107, n.º 6 (2000): 2946. http://dx.doi.org/10.1121/1.429374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bowler, C., A. J. Medland y C. W. Stammers. "Vehicle Vibration — Active Control". Measurement and Control 34, n.º 4 (mayo de 2001): 109. http://dx.doi.org/10.1177/002029400103400406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kanestrom, R. K. y O. Egeland. "Nonlinear active vibration damping". IEEE Transactions on Automatic Control 39, n.º 9 (1994): 1925–28. http://dx.doi.org/10.1109/9.317126.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Viteckova, Miluse, Antonin Vitecek y Jiri Tuma. "ACTIVE ROTOR VIBRATION CONTROL". Mechanics and Control 32, n.º 2 (2013): 77. http://dx.doi.org/10.7494/mech.2013.32.2.77.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hill, Wayne y Lev S. Tsimring. "Active vibration control system". Journal of the Acoustical Society of America 120, n.º 3 (2006): 1168. http://dx.doi.org/10.1121/1.2355963.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Fuller, C. R., S. J. Elliott, P. A. Nelson y Jiri Tichy. "Active Control of Vibration". Physics Today 50, n.º 5 (mayo de 1997): 64. http://dx.doi.org/10.1063/1.881838.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

SETO, Kazuto. "Active Vibration and Noise Control. Trends on Active Vibration and Noise Control." Journal of the Japan Society for Precision Engineering 64, n.º 5 (1998): 641–45. http://dx.doi.org/10.2493/jjspe.64.641.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Biermann, Jan-Welm, Alessandro Fortino, Michael Reke y Ufuk Bakirdogen. "Active Vibration Control By Electro-active Polymers". ATZ worldwide 115, n.º 7-8 (13 de junio de 2013): 10–14. http://dx.doi.org/10.1007/s38311-013-0080-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

FUJITA, Takafumi. "Active Vibration and Noise Control. Active Vibration Control of Buildings with Smart Structures." Journal of the Japan Society for Precision Engineering 64, n.º 5 (1998): 655–59. http://dx.doi.org/10.2493/jjspe.64.655.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Mizuno, Takeshi, Masuo Hannuki, Yuji Ishino, Toshiro Higuchi y Makoto Murayama. "ACTIVE VIBRATION ISOLATION SYSTEM USING AN ACTIVE DYNAMIC VIBRATION ABSORBER AS AN ACCELEROMETER". Proceedings of the International Conference on Motion and Vibration Control 6.2 (2002): 673–77. http://dx.doi.org/10.1299/jsmeintmovic.6.2.673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Jacquiet, Philippe, C. Mulato, A. Thiam, Samba Gueye y D. Cheikh. "Efficacité et rémanence de l'amitraz (Taktic R) sur les adultes de Hyalomma dromedarii chez le dromadaire : preliminary study". Revue d’élevage et de médecine vétérinaire des pays tropicaux 47, n.º 2 (1 de febrero de 1994): 219–22. http://dx.doi.org/10.19182/remvt.9113.

Texto completo
Resumen
L'amitraz (concentré émulsifiable à 12,5 %) a été testé comme moyen de contrôle de Hyalomma dromedarii sur dromadaire dans un troupeau de chamelles laitières de la périphérie de Nouakchott (Mauritanie) à la concentration de 0,025 % de matière active. L'efficacité et la rapidité d'action sont nettes sur les tiques adultes: 95 % de réduction en moins de 8 h, tandis que les nymphes semblent plus résistantes: 50 % de réduction seulement 8 h après traitement. La rémanence de I'amitraz sur dromadaire est très faible: moins de 24 h. De plus, le traite-ment n'a aucun effet sur la survie, la ponte et l'éclosion des oeufs des femelles qui se fixent dans les jours qui suivent la pulvérisation de I'amitraz. Les causes probables de cette faible rémanence sont discutées.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Li, Shi Ming Ji, Yi Xie y Qiao Ling Yuan. "Study of Active Vibration Control for Flexible Beam’s Vibration". Advanced Materials Research 69-70 (mayo de 2009): 685–89. http://dx.doi.org/10.4028/www.scientific.net/amr.69-70.685.

Texto completo
Resumen
The attenuation of structure vibration is very slow when flexible strucure is stirred external force. It seriously affected the life of flexible structure. Smart structures used piezoelectric ceramics as actuators are an effective manner to solve the problem. This paper uses Fiber Bragg Grating (FBG) as sensors and piezoelectric ceramics as actuators to study the active vibration control for the resonance of the smart beam. Two groups of piezoelectric ceramics will be used for vibration exciter and vibration abatement, respectively. The fiber smart beam is excited to a sharp vibration nearby the particular resonance frequency by controlling the frequency of the vibration excitation. The vibration signal is measured by the FBG sensors and the close loop feedback control is fulfilled by the vibration abatement group, and the vibration amplitude of the fiber smart beam is abated. The experiment results show that the resonance amplitude of the beam is obviously abated by adjusting the frequency, amplitude and phase of the vibration abatement circuit.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Nakano, Kimihiko, Yoshihiro Suda y Shigeyuki Nakadai. "Self-Powered Active Vibration Control Using Regenerated Vibration Energy". Journal of Robotics and Mechatronics 11, n.º 4 (20 de agosto de 1999): 310–14. http://dx.doi.org/10.20965/jrm.1999.p0310.

Texto completo
Resumen
Active vibration control using regenerated vibration energy, i.e., self-powered active vibration control is proposed in which energy absorbed by a damper is stored in a condenser. An actuator produces control input using this stored energy. This requires no external energy. Energy used by the actuator is restricted to be less than energy regenerated. It is important to reduce energy consumption in the actuator. The control we developed requires less external energy than typical active control. A linear DC motor operating as an energy regenerative damper with high efficiency is used in experiments realizing self-powered active control and showing better isolation than passive control.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Peng, Chao y Xing Long Gong. "Active-Adaptive Vibration Absorbers and its Vibration Attenuation Performance". Applied Mechanics and Materials 312 (febrero de 2013): 262–67. http://dx.doi.org/10.4028/www.scientific.net/amm.312.262.

Texto completo
Resumen
To improve the working frequency band and the damping effect of vibration absorber, an active-adaptive vibration absorber (AAVA) was presented. The AAVA can be considered as the integration of adaptive tuned vibration absorber (ATVA) and active vibration absorbers (AVA). The principle and the dynamic character of the proposed AAVA were theoretically analyzed. Based on the analysis, a prototype was designed and manufactured. Its dynamic properties and vibration attenuation performances were experimentally investigated. The experimental results demonstrated that the damping ratio of the prototype was significantly reduced by the active force. Consequently, its vibration attenuation capability was significantly improved compared with the ATVA.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kaizuka, T. y K. Nakano. "Active vibration control of a plate using vibration gradients". Journal of Physics: Conference Series 744 (septiembre de 2016): 012003. http://dx.doi.org/10.1088/1742-6596/744/1/012003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Block, Carsten y Horst Peter Woelfel. "Active vibration isolation of structures with vibration sensitive equipment". IABSE Symposium Report 88, n.º 5 (1 de enero de 2004): 42–47. http://dx.doi.org/10.2749/222137804796302158.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Tsuji, Hideki, Hiroyuki Itoh, Shinji Mitsuta, Naoyuki Kanayama, Hideaki Kawakami y Yukiyoshi Takayama. "Vibration Reduction of Transfer Feeder by Active Vibration Control." Transactions of the Japan Society of Mechanical Engineers Series C 61, n.º 585 (1995): 1867–72. http://dx.doi.org/10.1299/kikaic.61.1867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Beltrán-Carbajal, Francisco. "Variable frequency harmonic vibration suppression using active vibration absorption". Revista Facultad de Ingeniería Universidad de Antioquia, n.º 73 (13 de noviembre de 2014): 144–56. http://dx.doi.org/10.17533/udea.redin.18126.

Texto completo
Resumen
Passive dynamic vibration absorbers have been extensively used for harmful vibration attenuation in many practical engineering systems. The applicability of these passive vibration absorption devices is limited to a specific narrow operation frequency bandwidth. In this article, a novel active vibration absorption scheme is proposed to extend the vibration suppression capability of a passive mass-spring-damper absorber for any excitation frequency, including interest resonant harmonic perturbation forces. The central foundations of a passive absorber are exploited in the design stage of the presented absorption scheme. Thus, the active absorption device applies forces on the protected mechanical system that counteract the unknown perturbation forces, conserving the vibration attenuation property of the passive absorber. The perturbation force is estimated on-line using an extended state observer proposed in this work. Simulation results are included to show the efficiency of the active vibration absorption scheme to reject completely unknown resonant and chaotic forced vibrations affecting the primary mechanical system, and to prove the effectiveness of the estimation of exogenous perturbation forces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Xing, Feng, Jian Guo Cao, Jing Wang y Chang Yong Deng. "Study on Active Vibration Control". Key Engineering Materials 562-565 (julio de 2013): 1527–30. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.1527.

Texto completo
Resumen
This paper analyses the active vibration control technology on the piezoelectric ceramics car-body pieces in fuzzy control Strategy. Adaptive controllers, based on fuzzy logics, are synthesized for the control of vibration of body structure. Piezoelectric element, control system and body structure have been combined to be a intelligent response system to external drive and it’s own vibration. This system can effect reducing body structure’s reaction from environmental load with external energy. The availability of the control strategy has been confirmed by experiments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Patten, William N. "Semi-active vibration mitigation assembly". Journal of the Acoustical Society of America 103, n.º 2 (1998): 643. http://dx.doi.org/10.1121/1.421182.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Pearson, J. T., R. M. Goodall y I. Lyndon. "Active control of helicopter vibration". Computing & Control Engineering Journal 5, n.º 6 (1 de diciembre de 1994): 277–84. http://dx.doi.org/10.1049/cce:19940608.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Meirovitch, Leonard. "Active control of structural vibration". Journal of the Acoustical Society of America 80, S1 (diciembre de 1986): S32. http://dx.doi.org/10.1121/1.2023751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hossain, M. A. y M. O. Tokhi. "Evolutionary adaptive active vibration control". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 211, n.º 3 (1 de mayo de 1997): 183–93. http://dx.doi.org/10.1243/0959651971539722.

Texto completo
Resumen
This paper presents an investigation into the development of an adaptive active control mechanism for vibration suppression using genetic algorithms (GAs). GAs are used to estimate the adaptive controller characteristics, where the controller is designed on the basis of optimal vibration suppression using the plant model. This is realized by minimizing the prediction error of the actual plant output and the model output. A MATLAB GA toolbox is used to identify the controller parameters. A comparative performance of the conventional recursive least-squares (RLS) scheme and the GA is presented. The active vibration control system is implemented with both the GA and the RLS schemes, and its performance assessed in the suppression of vibration along a flexible beam structure in each case.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Pinson, George T. "Active vibration stabilizer and isolator". Journal of the Acoustical Society of America 84, n.º 5 (noviembre de 1988): 1962. http://dx.doi.org/10.1121/1.397095.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Xing, Feng, Jian Guo Cao, Jing Wang y Chang Yong Deng. "Study on Active Vibration Control". Advanced Materials Research 744 (agosto de 2013): 528–31. http://dx.doi.org/10.4028/www.scientific.net/amr.744.528.

Texto completo
Resumen
This paper analyses the active vibration control technology on the piezoelectric ceramics car-body pieces in fuzzy control Strategy. Adaptive controllers, based on fuzzy logics, are synthesized for the control of vibration of body structure. Piezoelectric element, control system and body structure have been combined to be a intelligent response system to external drive and it’s own vibration. This system can effect reducing body structure’s reaction from environmental load with external energy. The availability of the control strategy has been confirmed by experiments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sahinkaya, M. N. "Active Sound and Vibration Control". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 218, n.º 6 (septiembre de 2004): 513–14. http://dx.doi.org/10.1177/095965180421800608.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Nemoto, Hirotomi. "Active vibration isolation support system". Journal of the Acoustical Society of America 122, n.º 3 (2007): 1313. http://dx.doi.org/10.1121/1.2781414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Richman, S. J., J. A. Giaime, D. B. Newell, R. T. Stebbins, P. L. Bender y J. E. Faller. "Multistage active vibration isolation system". Review of Scientific Instruments 69, n.º 6 (junio de 1998): 2531–38. http://dx.doi.org/10.1063/1.1148954.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía