Índice
Literatura académica sobre el tema "Reconnaissance de Caméras"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Reconnaissance de Caméras".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Reconnaissance de Caméras"
Ghorbel, Enjie. "Reconnaissance rapide et précise d'actions humaines à partir de caméras RGB-D". Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR027/document.
Texto completoThe recent availability of RGB-D cameras has renewed the interest of researchers in the topic of human action recognition. More precisely, several action recognition methods have been proposed based on the novel modalities provided by these cameras, namely, depth maps and skeleton sequences. These approaches have been mainly evaluated in terms of recognition accuracy. This thesis aims to study the issue of fast action recognition from RGB-D cameras. It focuses on proposing an action recognition method realizing a trade-off between accuracy and latency for the purpose of applying it in real-time scenarios. As a first step, we propose a comparative study of recent RGB-D based action recognition methods using the two cited criteria: accuracy of recognition and rapidity of execution. Then, oriented by the conclusions stated thanks to this comparative study, we introduce a novel, fast and accurate human action descriptor called Kinematic Spline Curves (KSC).This latter is based on the cubic spline interpolation of kinematic values. Moreover, fast spatialand temporal normalization are proposed in order to overcome anthropometric variability, orientation variation and rate variability. The experiments carried out on four different benchmarks show the effectiveness of this approach in terms of execution time and accuracy. As a second step, another descriptor is introduced, called Hierarchical Kinematic Covariance(HKC). This latter is proposed in order to solve the issue of fast online action recognition. Since this descriptor does not belong to a Euclidean space, but is an element of the space of Symmetric Positive semi-definite (SPsD) matrices, we adapt kernel classification methods by the introduction of a novel distance called Modified Log-Euclidean, which is inspiredfrom Log-Euclidean distance. This extension allows us to use suitable classifiers to the feature space SPsD of matrices. The experiments prove the efficiency of our method, not only in terms of rapidity of calculation and accuracy, but also in terms of observational latency. These conclusions show that this approach combined with an action segmentation method could be appropriate to online recognition, and consequently, opens up new prospects for future works
Leroy, Vincent. "Modélisation 4D rapide et précise de larges séquences multi-caméras". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM042.
Texto completoRecent advances in acquisition and processing technologies lead to the fast growth of a major branch in media production: volumetric video. In particular, the rise of virtual and augmented reality fuels an increased need for content suitable to these new media including 3D contents obtained from real scenes, as the ability to record a live performance and replay it from any given point of view allows the user to experience a realistic and immersive environment.This manuscript aims at presenting the problem of 4D shape reconstruction from multi-view RGB images, which is one way to create such content. We especially target real life performance capture, containing complex surface details. Typical challenges for these capture situations include smaller visual projection areas of objects of interest due to wider necessary fields of view for capturing motion; occlusion and self-occlusion of several subjects interacting together; lack of texture content typical of real-life subject appearance and clothing; or motion blur with fast moving subjects such as sport action scenes. An essential and still improvable aspect in this matter is the fidelity and quality of the recovered shapes, our goal in this work.We present a full reconstruction pipeline suited for this scenario, to which we contributed in many aspects. First, Multi-view stereo (MVS) based methods have attained a good level of quality with pipelines that typically comprise feature extraction, matching stages and 3D shape inference. Interestingly, very recent works have re-examined stereo and MVS by introducing features and similarity functions automatically inferred using deep learning, the main promise of this type of method being to include better data-driven priors. We examine in a first contribution whether these improvements transfer to the more general and complex case of live performance capture, where a diverse set of additional difficulties arise. We then explain how to use this learning strategy to robustly build a shape representation, from which can be extracted a 3D model. Once we obtain this representation at every frame of the captured sequence, we discuss how to exploit temporal redundancy for precision refinement by propagating shape details through adjacent frames. In addition to being beneficial to many dynamic multi-view scenarios this also enables larger scenes where such increased precision can compensate for the reduced spatial resolution per image frame. The source code implementing the different reconstruction methods is released to the public as open source software
Gond, Laétitia. "Système multi-caméras pour l'analyse de la posture humaine". Clermont-Ferrand 2, 2009. http://www.theses.fr/2009CLF21922.
Texto completoMousse, Ange Mikaël. "Reconnaissance d'activités humaines à partir de séquences multi-caméras : application à la détection de chute de personne". Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0453/document.
Texto completoArtificial vision is an involving field of research. The new strategies make it possible to have some autonomous networks of cameras. This leads to the development of many automatic surveillance applications using the cameras. The work developed in this thesis concerns the setting up of an intelligent video surveillance system for real-time people fall detection. The first part of our work consists of a robust estimation of the surface area of a person from two (02) cameras with complementary views. This estimation is based on the detection of each camera. In order to have a robust detection, we propose two approaches. The first approach consists in combining a motion detection algorithm based on the background modeling with an edge detection algorithm. A fusion approach has been proposed to make much more efficient the results of the detection. The second approach is based on the homogeneous regions of the image. A first segmentation is performed to find homogeneous regions of the image. And finally we model the background using obtained regions
Badie, Julien. "Optimisation du suivi de personnes dans un réseau de caméras". Thesis, Nice, 2015. http://www.theses.fr/2015NICE4090/document.
Texto completoThis thesis addresses the problem of improving the performance of people tracking process in a new framework called Global Tracker, which evaluates the quality of people trajectory (obtained by simple tracker) and recovers the potential errors from the previous stage. The first part of this Global Tracker estimates the quality of the tracking results, based on a statistical model analyzing the distribution of the target features to detect potential anomalies.To differentiate real errors from natural phenomena, we analyze all the interactions between the tracked object and its surroundings (other objects and background elements). In the second part, a post tracking method is designed to associate different tracklets (segments of trajectory) corresponding to the same person which were not associated by a first stage of tracking. This tracklet matching process selects the most relevant appearance features to compute a visual signature for each tracklet. Finally, the Global Tracker is evaluated with various benchmark datasets reproducing real-life situations, outperforming the state-of-the-art trackers
Letouzey, Antoine. "Modélisation 4D à partir de plusieurs caméras". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771531.
Texto completoFleuret, Laurence. "Unicité et ambiguïté de la reconstruction tridimensionnelle du mouvement de courbes rigides". Nancy 1, 1998. http://www.theses.fr/1998NAN10241.
Texto completoMeden, Boris. "Ré-identification de personnes : application aux réseaux de caméras à champs disjoints". Phd thesis, Toulouse 3, 2013. http://thesesups.ups-tlse.fr/1952/.
Texto completoThis thesis deals with intelligent videosurveillance, and focus on the supervision of camera networks with nonoverlapping fields of view, a classical constraint when it comes to limitate the building instrumentation. It is one of the use-case of the pedestrian re-identification problem. On that point, the thesis distinguishes itself from state of the art methods, which treat the problem from the descriptor perspective through image to image signatures comparison. Here we consider it from a bayesian filtering perspective : how to plug re-identification in a complete multi-target tracking process, in order to maintain targets identities, in spite of observation discontinuities. Thus we consider tracking and signature comparison, at the camera level, and use that module to take decisions at the network level. We describe first the classical re-identification approaches, based on the description. Then, we propose a mixed-state particle filter framework to estimate jointly the targets positions and their identities in the cameras. A second stage of processing integrates the network topology and optimise the re-identifications in the network. Considering the lack of public data in nonoverlapping camera network, we mainly demonstrate our approach on camera networks deployed at the lab. A publication of these data is in progress
Hamdoun, Omar. "Détection et ré-identification de piétons par points d'intérêt entre caméras disjointes". Phd thesis, École Nationale Supérieure des Mines de Paris, 2010. http://pastel.archives-ouvertes.fr/pastel-00566417.
Texto completoMeden, Boris. "Ré-identification de personnes : Application aux réseaux de caméras à champs disjoints". Phd thesis, Université Paul Sabatier - Toulouse III, 2013. http://tel.archives-ouvertes.fr/tel-00822779.
Texto completo