Tesis sobre el tema "Recommendation graph"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 40 mejores tesis para su investigación sobre el tema "Recommendation graph".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Huang, Zan. "GRAPH-BASED ANALYSIS FOR E-COMMERCE RECOMMENDATION". Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1167%5F1%5Fm.pdf&type=application/pdf.
Texto completoLarsson, Carl-Johan. "Movie Recommendation System Using Large Scale Graph-Processing". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200601.
Texto completoSöderkvist, Nils. "Recommendation system for job coaches". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446792.
Texto completoOzturk, Gizem. "A Hybrid Veideo Recommendation System Based On A Graph Based Algorithm". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612624/index.pdf.
Texto completoLandia, Nikolas. "Content-awareness and graph-based ranking for tag recommendation in folksonomies". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58069/.
Texto completoPriya, Rashmi. "RETAIL DATA ANALYTICS USING GRAPH DATABASE". UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/67.
Texto completoOlmucci, Poddubnyy Oleksandr. "Graph Neural Networks for Recommender Systems". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25033/.
Texto completoBereczki, Márk. "Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Texto completoRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
You, Di. "Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation". Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1321.
Texto completoLisena, Pasquale. "Knowledge-based music recommendation : models, algorithms and exploratory search". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.
Texto completoRepresenting the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
Slaimi, Fatma. "Découverte et recommandation de services Web". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0069.
Texto completoThe Web has become an universal platform for content hosting and distributed heterogeneous applications that can be accessed manually or automatically. In this context, Web services have established themselves as a key technology for deploying interactions across applications. The standard Web services technologies allow and facilitate the manual programming of these applications. To promote automatic programming based on Web services, a major problem arises : that of their discovery. Several approaches addressing this problem have been proposed in the literature. The aim of this thesis is to improve the Web services discovery process. We proposed three approaches. We proposed a Web services discovery approach that combines several matching techniques. The second consists on the validation of the services returned by an automatic process of discovery using users’ competencies. These approaches do not take into account the evolution of services over time and user preferences. To address these shortcomings, several approaches incorporate referral techniques to assist the discovery process. A large majority of these approaches are based on assessments of QoS properties. In practice, these assessments are rarely available. In other systems, trust relationships between users and services are used. These relationships are established based on invocations evaluations of similar services. However, invoking the same service do not necessarily mean having the same preferences. Hence, we propose, in our third approach, the use of the relations of interest between users to recommend services. The approach relies on modeling services’ ecosystem by database graphs
Betti, Andrea. "Studio e progettazione di tecniche per l'estrazione automatica di metadati relativi all'accessibilità delle risorse didattiche". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24969/.
Texto completoKucuktunc, Onur. "Result Diversification on Spatial, Multidimensional, Opinion, and Bibliographic Data". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374148621.
Texto completoNzekon, Nzeko'o Armel Jacques. "Système de recommandation avec dynamique temporelle basée sur les flots de liens". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS454.
Texto completoRecommending appropriate items to users is crucial in many e-commerce platforms that propose a large number of items to users. Recommender systems are one favorite solution for this task. Most research in this area is based on explicit ratings that users give to items, while most of the time, ratings are not available in sufficient quantities. In these situations, it is important that recommender systems use implicit data which are link stream connecting users to items while maintaining timestamps i.e. users browsing, purchases and streaming history. We exploit this type of implicit data in this thesis. One common approach consists in selecting the N most relevant items to each user, for a given N, which is called top-N recommendation. To do so, recommender systems rely on various kinds of information, like content-based features of items, past interest of users for items and trust between users. However, they often use only one or two such pieces of information simultaneously, which can limit their performance because user's interest for an item can depend on more than two types of side information. To address this limitation, we make three contributions in the field of graph-based recommender systems. The first one is an extension of the Session-based Temporal Graph (STG) introduced by Xiang et al., which is a dynamic graph combining long-term and short-term preferences in order to better capture user preferences over time. STG ignores content-based features of items, and make no difference between the weight of newer edges and older edges. The new proposed graph Time-weight Content-based STG addresses STG limitations by adding a new node type for content-based features of items, and a penalization of older edges. The second contribution is the Link Stream Graph (LSG) for temporal recommendations. This graph is inspired by a formal representation of link stream, and has the particularity to consider time in a continuous way unlike others state-of-the-art graphs, which ignore the temporal dimension like the classical bipartite graph (BIP), or consider time discontinuously like STG where time is divided into slices. The third contribution in this thesis is GraFC2T2, a general graph-based framework for top-N recommendation. This framework integrates basic recommender graphs, and enriches them with content-based features of items, users' preferences temporal dynamics, and trust relationships between them. Implementations of these three contributions on CiteUlike, Delicious, Last.fm, Ponpare, Epinions and Ciao datasets confirm their relevance
Poulain, Rémy. "Analyse et modélisation de la diversité des structures relationnelles à l'aide de graphes multipartis". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS453.
Texto completoThere is no longer any need to prove that digital technology, the Internet and the web have led to a revolution, particularly in the way people get information. Like any revolution, it is followed by a series of issues : equal treatment of users and suppliers, ecologically sustainable consumption, freedom of expression and censorship, etc. Research needs to provide a clear vision of these stakes. Among these issues, we can talk about two phenomena : the echo chamber phenomenon and the filter bubble phenomenon. These two phenomena are linked to the lack of diversity of information visible on the Internet, and one may wonder about the impact of recommendation algorithms. Even if this is our primary motivation, we are moving away from this subject to propose a general scientific framework to analyze diversity. We find that the graph formalism is useful enough to be able to represent relational data. More precisely, we will analyze relational data with entities of different natures. This is why we chose the n-part graph formalism because this is a good way to represent a great diversity of data. Even if the first data we studied is related to recommendation algorithms (music consumption or purchase of articles on a platform) we will see over the course of the manuscript how this formalism can be adapted to other types of data (politicized users on Twitter, guests of television shows, establishment of NGOs in different States ...). There are several objectives in this study : — Mathematically define diversity indicators on the n-part graphs. — Algorithmically define how to calculate them. — Program these algorithms to make them a usable computer object. — Use these programs on quite varied data. — See the different meanings that our indicators can have. We will begin by describing the mathematical formalism necessary for our study. Then we will apply our mathematical object to basic examples to see all the possibilities that our object offers us. This will show us the importance of normalizing our indicators, and will motivate us to study random normalization. Then we will see another series of examples which will allow us to go further on our indicators, going beyond the static and tripartite side to approach graphs with more layers and depending on time. To be able to have a better vision of what the real data brings us, we will study our indicators on completely randomly generated graphs
Axelsson, Victor. "Collaborative Recommendations for Music Session Instrumentation : Contrasting Graph to ML Based Approaches". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232065.
Texto completoVid digitalt musikskapande behöver kompositören lära sig relevanta verktyg för musik i den specifika domänen. Inlärningskurvan för anskaffningen av färdigheter för kreativt musikskapande, med avseende på tillgängliga verktyg, kan vara brant. Rekommendationssystem syftar till att hjälpa användaren komma över inlärningströskeln genom att filtrera ut relevant material. Ett gemensamt problem för de vanligare rekommendationsmetoderna är att dessa fokuserar på enkelmätt utvärderingsmetrik. Detta står i kontrast till sådan metrik vilken återspeglar ett naturligt nästa steg vid konsumtion och skapande av musik. Det finns ett överdrivet fokus på en liten grupp mätvärden, speciellt träffsäkerhet (eng. accuracy), och hur dessa kan optimeras. Samtidigt finns det också ett stort stöd för behovet av kompletterande metrik, såsom nyheter (eng. novelty) och katalogtäckning (eng. catalogue coverage), för en bättre mångfald i rekommendationerna. Detta tyder på att även om behovet av kompletterande metrik är känt, förbises det ofta. Majoriteten av de tillgängliga systemen använder rekommendationer vilka baseras antingen på grafer eller maskinlärda modeller. Vanligt förekommande är att diskussionen rörande valet av utvärderingsmetrik och metod samt dessas ömsesidiga influens bortses ifrån. De verktyg som används för experimentet i denna uppsats består av sessioner med digitala instrument, där rekommendationen syftar till att visa vilket instrument som kan väljas i nästa steg i sessionen. Denna uppsatts bidrar med en diskussion om hur datadrivna rekommendationsarkitekturer och tillvägagångssätt kan konstrueras för att erhålla en mer detaljerad kontroll över vilka mätvärden som optimeras. Genom att använda en linjär kombination av likhet, självexciterade händelser (eng. self-exciting events) och en viktad graf kan olika rekommendationsmetoder, och så till vida utvärderingsmetrik, dynamiskt ges mer utrymme i den slutgiltiga bedömningen. Genom att jämföra detta grafbaserade tillvägagångssätt med en maskinlärd modell visar denna uppsats hur metrik påverkas av metodval. Detta medför att rekommendationssystem kan konstrueras för bättre transparens för musikskaparen och mer användarkontroll över metrikoptimeringen.
Ruas, Olivier. "The many faces of approximation in KNN graph computation". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S088/document.
Texto completoThe incredible quantity of available content in online services makes content of interest incredibly difficult to find. The most emblematic way to help the users is to do item recommendation. The K-Nearest-Neighbors (KNN) graph connects each user to its k most similar other users, according to a given similarity metric. The computation time of an exact KNN graph is prohibitive in online services. Existing approaches approximate the set of candidates for each user’s neighborhood to decrease the computation time. In this thesis we push farther the notion of approximation : we approximate the data of each user, the similarity and the data locality. The resulting approach clearly outperforms all the other ones
Arrascue, Ayala Victor Anthony [Verfasser] y Georg [Akademischer Betreuer] Lausen. "Towards an effective consumption of large-scale knowledge graphs for recommendations". Freiburg : Universität, 2020. http://d-nb.info/1223366189/34.
Texto completoKaya, Hamza. "Using Social Graphs In One-class Collaborative Filtering Problem". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611131/index.pdf.
Texto completoChennupati, Nikhil. "Recommending Collaborations Using Link Prediction". Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621899961924795.
Texto completoDe, Vos Gerhard Johannes. "Generally recognised accounting practice : a critical evaluation of the impact of grap 23 on administrative tax legislation and recommendations". Diss., University of Pretoria, 2009. http://hdl.handle.net/2263/23893.
Texto completoDissertation (MCom)--University of Pretoria, 2009.
Taxation
unrestricted
Benkoussas, Chahinez. "Approches non supervisées pour la recommandation de lectures et la mise en relation automatique de contenus au sein d'une bibliothèque numérique". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4379/document.
Texto completoThis thesis deals with the field of information retrieval and the recommendation of reading. It has for objects:— The creation of new approach of document retrieval and recommendation using techniques of combination of results, aggregation of social data and reformulation of queries;— The creation of an approach of recommendation using methods of information retrieval and graph theories.Two collections of documents were used. First one is a collection which is provided by CLEF (Social Book Search - SBS) and the second from the platforms of electronic sources in Humanities and Social Sciences OpenEdition.org (Revues.org). The modelling of the documents of every collection is based on two types of relations:— For the first collection (SBS), documents are connected with similarity calculated by Amazon which is based on several factors (purchases of the users, the comments, the votes, products bought together, etc.);— For the second collection (OpenEdition), documents are connected with relations of citations, extracted from bibliographical references.We show that the proposed approaches bring in most of the cases gain in the performances of research and recommendation. The manuscript is structured in two parts. The first part "state of the art" includes a general introduction, a state of the art of informationretrieval and recommender systems. The second part "contributions" includes a chapter on the detection of reviews of books in Revues.org; a chapter on the methods of IR used on complex queries written in natural language and last chapter which handles the proposed approach of recommendation which is based on graph
Gulikers, Lennart. "Sur deux problèmes d’apprentissage automatique : la détection de communautés et l’appariement adaptatif". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE062/document.
Texto completoIn this thesis, we study two problems of machine learning: (I) community detection and (II) adaptive matching. I) It is well-known that many networks exhibit a community structure. Finding those communities helps us understand and exploit general networks. In this thesis we focus on community detection using so-called spectral methods based on the eigenvectors of carefully chosen matrices. We analyse their performance on artificially generated benchmark graphs. Instead of the classical Stochastic Block Model (which does not allow for much degree-heterogeneity), we consider a Degree-Corrected Stochastic Block Model (DC-SBM) with weighted vertices, that is able to generate a wide class of degree sequences. We consider this model in both a dense and sparse regime. In the dense regime, we show that an algorithm based on a suitably normalized adjacency matrix correctly classifies all but a vanishing fraction of the nodes. In the sparse regime, we show that the availability of only a small amount of information entails the existence of an information-theoretic threshold below which no algorithm performs better than random guess. On the positive side, we show that an algorithm based on the non-backtracking matrix works all the way down to the detectability threshold in the sparse regime, showing the robustness of the algorithm. This follows after a precise characterization of the non-backtracking spectrum of sparse DC-SBM's. We further perform tests on well-known real networks. II) Online two-sided matching markets such as Q&A forums and online labour platforms critically rely on the ability to propose adequate matches based on imperfect knowledge of the two parties to be matched. We develop a model of a task / server matching system for (efficient) platform operation in the presence of such uncertainty. For this model, we give a necessary and sufficient condition for an incoming stream of tasks to be manageable by the system. We further identify a so-called back-pressure policy under which the throughput that the system can handle is optimized. We show that this policy achieves strictly larger throughput than a natural greedy policy. Finally, we validate our model and confirm our theoretical findings with experiments based on user-contributed content on an online platform
"Graph-based recommendation with label propagation". 2011. http://library.cuhk.edu.hk/record=b5894820.
Texto completoThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 97-110).
Abstracts in English and Chinese.
Abstract --- p.ii
Acknowledgement --- p.vi
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Overview --- p.1
Chapter 1.2 --- Motivations --- p.6
Chapter 1.3 --- Contributions --- p.9
Chapter 1.4 --- Organizations of This Thesis --- p.11
Chapter 2 --- Background --- p.14
Chapter 2.1 --- Label Propagation Learning Framework --- p.14
Chapter 2.1.1 --- Graph-based Semi-supervised Learning --- p.14
Chapter 2.1.2 --- Green's Function Learning Framework --- p.16
Chapter 2.2 --- Recommendation Methods --- p.19
Chapter 2.2.1 --- Traditional Memory-based Methods --- p.19
Chapter 2.2.2 --- Traditional Model-based Methods --- p.20
Chapter 2.2.3 --- Label Propagation Recommendation Models --- p.22
Chapter 2.2.4 --- Latent Feature Recommendation Models . --- p.24
Chapter 2.2.5 --- Social Recommendation Models --- p.25
Chapter 2.2.6 --- Tag-based Recommendation Models --- p.25
Chapter 3 --- Recommendation with Latent Features --- p.28
Chapter 3.1 --- Motivation and Contributions --- p.28
Chapter 3.2 --- Item Graph --- p.30
Chapter 3.2.1 --- Item Graph Definition --- p.30
Chapter 3.2.2 --- Item Graph Construction --- p.31
Chapter 3.3 --- Label Propagation Recommendation Model with Latent Features --- p.33
Chapter 3.3.1 --- Latent Feature Analysis --- p.33
Chapter 3.3.2 --- Probabilistic Matrix Factorization --- p.35
Chapter 3.3.3 --- Similarity Consistency Between Global and Local Views (SCGL) --- p.39
Chapter 3.3.4 --- Item-based Green's Function Recommendation Based on SCGL --- p.41
Chapter 3.4 --- Experiments --- p.41
Chapter 3.4.1 --- Dataset --- p.43
Chapter 3.4.2 --- Baseline Methods --- p.43
Chapter 3.4.3 --- Metrics --- p.45
Chapter 3.4.4 --- Experimental Procedure --- p.45
Chapter 3.4.5 --- Impact of Weight Parameter u --- p.46
Chapter 3.4.6 --- Performance Comparison --- p.48
Chapter 3.5 --- Summary --- p.50
Chapter 4 --- Recommendation with Social Network --- p.51
Chapter 4.1 --- Limitation and Contributions --- p.51
Chapter 4.2 --- A Social Recommendation Framework --- p.55
Chapter 4.2.1 --- Social Network --- p.55
Chapter 4.2.2 --- User Graph --- p.57
Chapter 4.2.3 --- Social-User Graph --- p.59
Chapter 4.3 --- Experimental Analysis --- p.60
Chapter 4.3.1 --- Dataset --- p.61
Chapter 4.3.2 --- Metrics --- p.63
Chapter 4.3.3 --- Experiment Setting --- p.64
Chapter 4.3.4 --- Impact of Control Parameter u --- p.65
Chapter 4.3.5 --- Performance Comparison --- p.67
Chapter 4.4 --- Summary --- p.69
Chapter 5 --- Recommendation with Tags --- p.71
Chapter 5.1 --- Limitation and Contributions --- p.71
Chapter 5.2 --- Tag-Based User Modeling --- p.75
Chapter 5.2.1 --- Tag Preference --- p.75
Chapter 5.2.2 --- Tag Relevance --- p.78
Chapter 5.2.3 --- User Interest Similarity --- p.80
Chapter 5.3 --- Tag-Based Label Propagation Recommendation --- p.83
Chapter 5.4 --- Experimental Analysis --- p.84
Chapter 5.4.1 --- Douban Dataset --- p.85
Chapter 5.4.2 --- Experiment Setting --- p.86
Chapter 5.4.3 --- Metrics --- p.87
Chapter 5.4.4 --- Impact of Tag and Rating --- p.88
Chapter 5.4.5 --- Performance Comparison --- p.90
Chapter 5.5 --- Summary --- p.92
Chapter 6 --- Conclusions and Future Work --- p.94
Chapter 6.0.1 --- Conclusions --- p.94
Chapter 6.0.2 --- Future Work --- p.96
Bibliography --- p.97
Silva, Ricardo Manuel Gonçalves da. "Knowledge Graph-Based Recipe Recommendation System". Master's thesis, 2020. https://hdl.handle.net/10216/132659.
Texto completoSilva, Ricardo Manuel Gonçalves da. "Knowledge Graph-Based Recipe Recommendation System". Dissertação, 2020. https://hdl.handle.net/10216/132659.
Texto completoYang, Sheng-Fang y 楊昇芳. "Cross-domain music recommendation based on superhighway graph embedding". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/e6h2fc.
Texto completo國立政治大學
資訊科學系
108
In recent years, big data and machine learning technology have been rapidly growing, and recommendation systems have been widely used in various real-world applications, such as music recommendation in music streaming services. However, for different domains, the recommneder systems will be different, because of the distinct user behavior data. Therefore, this thesis aims to use Heterogeneous Information Network Embedding to project the nodes in a network/domain into another network/domain on the basis of the low-dimension representations of the nodes. Therefore, this paper proposes a cross-domain music recommendation approach based on heterogeneous information network representation learning, the idea of which is to enrich the new domain/market data by using a well developed domain/market.
BHANDARI, UPASANA. "SEREDIPITIOUS RECOMMENDATION FOR MOBILE APPLICATIONS USING ITEM - SIMILARITY GRAPH". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14508.
Texto completoWetzker, Robert [Verfasser]. "Graph-based recommendation in broad folksonomies / vorgelegt von Robert Wetzker". 2010. http://d-nb.info/1005965838/34.
Texto completoVijaikumar, M. "Neural Models for Personalized Recommendation Systems with External Information". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5667.
Texto completoXiao, Li-Pin y 蕭立品. "Personalized Product Recommendation Based on Embedding of Multi-Behavior Network and Product Information Knowledge Graph". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/uc79jt.
Texto completo國立交通大學
資訊科學與工程研究所
108
As the growth of e-commerce, people can buy almost everything they need for their trips like SIM cards, theme park tickets and transportation tickets on the internet before they head on for the trip. When users browse items and order some products on website, they may leave their implicitly preference to items. The recorded implicit feedback can provide knowledge for improving the recommendation system. However, there are two challenges for knowledge exploring from implicit feedback data. First, many of products have been browsed frequently but may not consequentially be ordered. The browsing-browsing actions are the majority compared to the browsing-order actions. The users' actions may not directly be considered as the preference on a specific item. Second, the popularity of sold products has a highly skewed distribution. The recommendation may meet the cold start problem. In this paper, we proposed a hybrid recommendation model. For extracting knowledge from implicit feedback, we develop the neighborhood structure of users and products in the multi-behavior interaction network that incorporates the browsing and order behaviors simultaneously. To deal with the cold product issue and the skewed distribution problem, we take the product information into consideration by using the metadata of products and extracting more features from the textual contents to form a knowledge graph. By applying embedding algorithms to the multi-behavior interaction network and the knowledge graph, we are able to catch the user preference from the collaborative implicit feedback aspect and product information aspect. To evaluate the performance of our model, we conduct extensive experiments on the real world dataset. The result of our approaches outperforms several widely used methods for recommendation system.
Hsu, Pei-Ying y 許珮瑩. "A Novel Explainable Mutual Fund Recommendation System Based on Deep Learning Techniques with Knowledge Graph Embeddings". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/wur49w.
Texto completo國立交通大學
資訊管理研究所
107
Since deep learning based models have gained success in various fields during recent years, many recommendation systems also start to take advantage of the deep learning techniques. However, while the deep learning based recommendation systems have achieved high recommendation performance, the lack of interpretability may reduce users' trust and satisfaction, while limiting the model to wide adoption in the real world. As a result, to strike a balance between high accuracy and interpretability, or even obtain both of them at the same time, has become a popular issue among the researches of recommendation systems. In this thesis, we would like to predict and recommend the funds that would be purchased by the customers in the next month, while providing explanations simultaneously. To achieve the goal, we leverage the structure of knowledge graph, and take advantage of deep learning techniques to embed customers and funds features to a unified latent space. We fully utilize the structure knowledge which cannot be learned by the traditional deep learning models, and get the personalized recommendations and explanations. Moreover, we extend the explanations to more complex ones by changing the training procedure of the model, and proposed a measure to rate for the customized explanations while considering strength and uniqueness of the explanations at the same time. Finally, we regard that the knowledge graph based structure could be extended to other applications, and proposed some possible special recommendations accordingly. By evaluating on the dataset of mutual fund transaction records, we verify the effectiveness of our model to provide precise recommendations, and also evaluate the assumptions that our model could utilize the structure knowledge well. Last but not least, we conduct some case study of explanations to demonstrate the effectiveness of our model to provide usual explanations, complex explanations, and other special recommendations.
Peixoto, Ana Rita Henrique. "A graph-based approach for sustainable walking tour recommendations: The case of Lisbon overcrowding". Master's thesis, 2019. http://hdl.handle.net/10071/20234.
Texto completoMotivação: O turismo em massa trouxe problemas de controlo da capacidade de carga na gestão das cidades. Os turistas, em número crescente, aglomeram-se nas zonas mais famosas, causando aí situações de sobrelotação, enquanto outros pontos de interesse (POIs, em Inglês) sustentáveis são sub-visitados. Objetivo: Permitir que as autoridades gestoras do turismo local montem uma base de dados de POIs sustentáveis, georreferenciados. Em seguida, combinar estes últimos com os dados de aglomeração local e implementar um sistema de recomendação de passeios turísticos pedestres. Proposta: Uma plataforma web para que o especialistas adicionem, de forma intuitiva através de um mapa, os pontos de interesse sustentáveis. Implementar um algoritmo de grafos, que gera caminhos e que recebe: as preferências do utilizador, as restrições do domínio do caminho, pontos de interesse sustentáveis e dados de congestionamento. Fornecendo assim, um caminho personalizado que obdece às restrições, sugere pontos de interesse sustentáveis e evita as áreas mais movimentadas. Deste modo, resolve o problema do caminho mais curto com multicriterias. Conclusão: São fornecidas evidências sobre a viabilidade de computar recomendações de passeios turísticos a pé, atendendo a restrições múltiplas e complexas, nomeadamente promovendo a sustentabilidade e mitigando a superlotação, usando um algoritmo de pesquisa em grafos.
Salamat, Amirreza. "Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization". Thesis, 2020. http://hdl.handle.net/1805/24769.
Texto completoResearch on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
Ding, Shichang. "User Attribute Inference via Mining User-Generated Data". Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-150E-5.
Texto completo(9740444), Amirreza Salamat. "Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization". Thesis, 2021.
Buscar texto completoGolovin, Nick y Erhard Rahm. "Automatic Optimization of Web Recommendations Using Feedback and Ontology Graphs". 2005. https://ul.qucosa.de/id/qucosa%3A32785.
Texto completoZHANG, LI-WEI y 張立偉. "Developed a system model program for recommendation of fertilizer application in grape". Thesis, 1990. http://ndltd.ncl.edu.tw/handle/19528335078346005081.
Texto completoChen, Cheng. "Trustworthiness, diversity and inference in recommendation systems". Thesis, 2016. http://hdl.handle.net/1828/7576.
Texto completoGraduate
0984
cchenv@uvic.ca
SZCZERBAK, Michal. "Sensibilité aux situations de façon collaborative". Phd thesis, 2013. http://tel.archives-ouvertes.fr/tel-00910927.
Texto completo