Literatura académica sobre el tema "RDF dataset metrics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "RDF dataset metrics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "RDF dataset metrics"
Mountantonakis, Michalis y Yannis Tzitzikas. "Content-based Union and Complement Metrics for Dataset Search over RDF Knowledge Graphs". Journal of Data and Information Quality 12, n.º 2 (14 de mayo de 2020): 1–31. http://dx.doi.org/10.1145/3372750.
Texto completoXia, Jianglin. "Credit Card Fraud Detection Based on Support Vector Machine". Highlights in Science, Engineering and Technology 23 (3 de diciembre de 2022): 93–97. http://dx.doi.org/10.54097/hset.v23i.3202.
Texto completoWang, Ke, Ligang Cheng y Bin Yong. "Spectral-Similarity-Based Kernel of SVM for Hyperspectral Image Classification". Remote Sensing 12, n.º 13 (6 de julio de 2020): 2154. http://dx.doi.org/10.3390/rs12132154.
Texto completoZhao, Qinghe, Zifang Zhang, Yuchen Huang y Junlong Fang. "TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values". Agriculture 12, n.º 9 (13 de septiembre de 2022): 1452. http://dx.doi.org/10.3390/agriculture12091452.
Texto completoChen, Yanji, Mieczyslaw M. Kokar, Jakub Moskal y Kaushik R. Chowdhury. "Metrics-Based Comparison of OWL and XML for Representing and Querying Cognitive Radio Capabilities". Applied Sciences 12, n.º 23 (23 de noviembre de 2022): 11946. http://dx.doi.org/10.3390/app122311946.
Texto completoJerop, Brenda y Davies Rene Segera. "An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant". BioMed Research International 2021 (20 de octubre de 2021): 1–10. http://dx.doi.org/10.1155/2021/4784057.
Texto completoMohammed, Yosra Abdulaziz y Eman Gadban Saleh. "Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology". Indonesian Journal of Electrical Engineering and Computer Science 21, n.º 2 (1 de febrero de 2021): 1113. http://dx.doi.org/10.11591/ijeecs.v21.i2.pp1113-1120.
Texto completoPanda, Mrutyunjaya. "Software Defect Prediction Using Hybrid Distribution Base Balance Instance Selection and Radial Basis Function Classifier". International Journal of System Dynamics Applications 8, n.º 3 (julio de 2019): 53–75. http://dx.doi.org/10.4018/ijsda.2019070103.
Texto completoVilla, Amalia, Abhijith Mundanad Narayanan, Sabine Van Huffel, Alexander Bertrand y Carolina Varon. "Utility metric for unsupervised feature selection". PeerJ Computer Science 7 (21 de abril de 2021): e477. http://dx.doi.org/10.7717/peerj-cs.477.
Texto completoBashir, Kamal, Tianrui Li y Mahama Yahaya. "A Novel Feature Selection Method Based on Maximum Likelihood Logistic Regression for Imbalanced Learning in Software Defect Prediction". International Arab Journal of Information Technology 17, n.º 5 (1 de septiembre de 2020): 721–30. http://dx.doi.org/10.34028/iajit/17/5/5.
Texto completoTesis sobre el tema "RDF dataset metrics"
Soderi, Mirco. "Semantic models for the modeling and management of big data in a smart city environment". Doctoral thesis, 2021. http://hdl.handle.net/2158/1232245.
Texto completoCapítulos de libros sobre el tema "RDF dataset metrics"
Rizvi, Syed Zeeshan, Muhammad Umar Farooq y Rana Hammad Raza. "Performance Comparison of Deep Residual Networks-Based Super Resolution Algorithms Using Thermal Images: Case Study of Crowd Counting". En Digital Interaction and Machine Intelligence, 75–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11432-8_7.
Texto completoHarkat, Houda, Jose Nascimento, Alexandre Bernardino y Hasmath Farhana Thariq Ahmed. "Fire images classification using high order statistical features". En Advances in Forest Fire Research 2022, 192–97. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_31.
Texto completoAhmad, Mahmood, Xiaowei Tang y Feezan Ahmad. "Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models: Taking Pohang Earthquake as a Case of Illustration". En Natural Hazards - Impacts, Adjustments and Resilience. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94274.
Texto completoActas de conferencias sobre el tema "RDF dataset metrics"
Gao, Hanning, Lingfei Wu, Po Hu y Fangli Xu. "RDF-to-Text Generation with Graph-augmented Structural Neural Encoders". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/419.
Texto completoShi, Yu y Rolf D. Reitz. "Assessment of Multi-Objective Genetic Algorithms With Different Niching Strategies and Regression Methods for Engine Optimization and Design". En ASME 2009 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/ices2009-76015.
Texto completoKornev, Denis, Roozbeh Sadeghian, Stanley Nwoji, Qinghua He, Amir Gandjbbakhche y Siamak Aram. "Machine Learning-Based Gaming Behavior Prediction Platform". En 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001826.
Texto completoInformes sobre el tema "RDF dataset metrics"
Idakwo, Gabriel, Sundar Thangapandian, Joseph Luttrell, Zhaoxian Zhou, Chaoyang Zhang y Ping Gong. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification : a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Engineer Research and Development Center (U.S.), julio de 2021. http://dx.doi.org/10.21079/11681/41302.
Texto completo