Índice
Literatura académica sobre el tema "RDB2RDF mapping"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "RDB2RDF mapping".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "RDB2RDF mapping"
Chen, Ying, Zhuoming Xu, Yuyan Ni, Guangxu Cao y Shiqing Zhang. "A RIF Based Mapping of RDB2RDF". International Journal of Database Theory and Application 7, n.º 6 (31 de diciembre de 2014): 29–44. http://dx.doi.org/10.14257/ijdta.2014.7.6.04.
Texto completoJun, Hee-Gook y Dong-Hyuk Im. "Semantics-Preserving RDB2RDF Data Transformation Using Hierarchical Direct Mapping". Applied Sciences 10, n.º 20 (12 de octubre de 2020): 7070. http://dx.doi.org/10.3390/app10207070.
Texto completoRi Kim, Ju, Zhanfang Zhao y Sung Kook Han. "Sparql query processing in relational databases". International Journal of Engineering & Technology 7, n.º 3.3 (8 de junio de 2018): 84. http://dx.doi.org/10.14419/ijet.v7i2.33.13860.
Texto completoTesis sobre el tema "RDB2RDF mapping"
Taki, Sara. "Anonymisation de données liées en utilisant la confidentialité différentielle". Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2023. http://www.theses.fr/2023ISAB0009.
Texto completoThis thesis studies the problem of privacy in linked open data (LOD). Thiswork is at the intersection of long lines of work on data privacy and linked open data.Our goal is to study how the presence of semantics impacts the publication of data andpossible data leaks. We consider RDF as the format to represent LOD and DifferentialPrivacy (DP) as the main privacy concept. DP was initially conceived to define privacyin the relational database (RDB) domain and is based on a quantification of the difficultyfor an attacker observing an output to identify which database among a neighborhoodis used to produce it.The objective of this thesis is four-fold: O1) to improve the privacy of LOD. Inparticular, to propose an approach to construct usable DP-mechanisms on RDF; O2) tostudy how neighborhood definitions over RDB in the presence of foreign key (FK) constraints translate to RDF; O3) to propose new neighborhood definitions over relationaldatabase translating into existing graph concepts to ease the design of DP mechanisms;and O4) to support the implementation of sanitization mechanisms for RDF graphs witha rigorous formal foundation.For O1, we propose a novel approach based on graph projection to adapt DP toRDF. For O2, we determine the privacy model resulting from the translation of popularprivacy model over RDB with FK constraints to RDF. For O3, we propose the restrictdeletion neighborhood over RDB with FK constraints whose translation to the RDFgraph world is equivalent to typed-node neighborhood. Moreover, we propose a looserdefinition translating to typed-outedge neighborhood. For O4, we propose a graphtransformation language based on graph rewriting to serve as a basis for constructingvarious sanitization mechanisms on attributed graphs.We support all our theoretical contributions with proof-of-concept prototypes thatimplement our proposals and are evaluated on real datasets to show the applicability ofour work
Westphal, Patrick. "Quality Assurance of RDB2RDF Mappings". 2014. https://ul.qucosa.de/id/qucosa%3A17242.
Texto completo