Siga este enlace para ver otros tipos de publicaciones sobre el tema: Rare earth sesquioxides.

Artículos de revistas sobre el tema "Rare earth sesquioxides"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Rare earth sesquioxides".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters y S. A. Basun. "Rare-earth-doped sesquioxides". Journal of Luminescence 87-89 (mayo de 2000): 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

ZINKEVICH, M. "Thermodynamics of rare earth sesquioxides". Progress in Materials Science 52, n.º 4 (mayo de 2007): 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Granier, Bernard y Serge Heurtault. "Density of Liquid Rare-Earth Sesquioxides". Journal of the American Ceramic Society 71, n.º 11 (noviembre de 1988): C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Djuraev, Davron Rakhmonovich y Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements". American Journal of Applied sciences 03, n.º 01 (30 de enero de 2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Texto completo
Resumen
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rodic, D., B. Antic y M. Mitric. "The rare earth ion distribution in mixed rare earth-yttrium sesquioxides". Journal of Magnetism and Magnetic Materials 140-144 (febrero de 1995): 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong y Alexandra Navrotsky. "Thermal Analysis of High Entropy Rare Earth Oxides". Materials 13, n.º 14 (14 de julio de 2020): 3141. http://dx.doi.org/10.3390/ma13143141.

Texto completo
Resumen
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Urban, Marek W. y Bahne C. Cornilsen. "Bonding anomalies in the rare earth sesquioxides". Journal of Physics and Chemistry of Solids 48, n.º 5 (enero de 1987): 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina y J. M. Rodríguez-Izquierdo. "HREM characterization of lanthana-supported rhodium catalysts". Proceedings, annual meeting, Electron Microscopy Society of America 48, n.º 4 (agosto de 1990): 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Texto completo
Resumen
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fedorov, P. P., M. V. Nazarkin y R. M. Zakalyukin. "On polymorphism and morphotropism of rare earth sesquioxides". Crystallography Reports 47, n.º 2 (marzo de 2002): 281–86. http://dx.doi.org/10.1134/1.1466504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sahu, P. Ch, Dayana Lonappan y N. V. Chandra Shekar. "High Pressure Structural Studies on Rare-Earth Sesquioxides". Journal of Physics: Conference Series 377 (30 de julio de 2012): 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zelmon, David E., Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov y Klaus Petermann. "Temperature-dependent Sellmeier equations for rare-earth sesquioxides". Applied Optics 52, n.º 16 (30 de mayo de 2013): 3824. http://dx.doi.org/10.1364/ao.52.003824.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Mikami, Masayoshi y Shinichiro Nakamura. "Electronic structure of rare-earth sesquioxides and oxysulfides". Journal of Alloys and Compounds 408-412 (febrero de 2006): 687–92. http://dx.doi.org/10.1016/j.jallcom.2005.01.068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kränkel, Christian, Anastasia Uvarova, Christo Guguschev, Sascha Kalusniak, Lena Hülshoff, Hiroki Tanaka y Detlef Klimm. "Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]". Optical Materials Express 12, n.º 3 (15 de febrero de 2022): 1074. http://dx.doi.org/10.1364/ome.450203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Polfus, Jonathan M., Truls Norby y Reidar Haugsrud. "Nitrogen defects from NH3in rare-earth sesquioxides and ZrO2". Dalton Trans. 40, n.º 1 (2011): 132–35. http://dx.doi.org/10.1039/c0dt01068e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kimura, Shin-ichi, Fumitaka Arai y Mikihiko Ikezawa. "Optical Study on Electronic Structure of Rare-Earth Sesquioxides". Journal of the Physical Society of Japan 69, n.º 10 (15 de octubre de 2000): 3451–57. http://dx.doi.org/10.1143/jpsj.69.3451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Dilawar, Nita, Deepak Varandani, Shalini Mehrotra, Himanshu K. Poswal, Surinder M. Sharma y Ashis K. Bandyopadhyay. "Anomalous high pressure behaviour in nanosized rare earth sesquioxides". Nanotechnology 19, n.º 11 (19 de febrero de 2008): 115703. http://dx.doi.org/10.1088/0957-4484/19/11/115703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Norby, Truls, Oddvar Dyrlie y Per Kofstad. "Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides". Journal of the American Ceramic Society 75, n.º 5 (mayo de 1992): 1176–81. http://dx.doi.org/10.1111/j.1151-2916.1992.tb05556.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Shah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach y Michael Ruck. "Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids". Chemistry 5, n.º 2 (2 de junio de 2023): 1378–94. http://dx.doi.org/10.3390/chemistry5020094.

Texto completo
Resumen
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ben Salem, M. y B. Yangui. "Domain Structures in Ferroelastic Materials: Case of Rare Earth Sesquioxides". Key Engineering Materials 101-102 (marzo de 1995): 61–94. http://dx.doi.org/10.4028/www.scientific.net/kem.101-102.61.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Arai, Fumitaka, Shin-ichi Kimura y Mikihiko Ikezawa. "Resonant Photoemission Study of Electronic Structure of Rare-Earth Sesquioxides". Journal of the Physical Society of Japan 67, n.º 1 (15 de enero de 1998): 225–29. http://dx.doi.org/10.1143/jpsj.67.225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Dilawar, Nita, Shalini Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar y A. K. Bandyopadhyay. "A Raman spectroscopic study of C-type rare earth sesquioxides". Materials Characterization 59, n.º 4 (abril de 2008): 462–67. http://dx.doi.org/10.1016/j.matchar.2007.04.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Nagao, Mahiko, Hideaki Hamano, Koji Hirata, Ryotaro Kumashiro y Yasushige Kuroda. "Hydration Process of Rare-Earth Sesquioxides Having Different Crystal Structures". Langmuir 19, n.º 22 (octubre de 2003): 9201–9. http://dx.doi.org/10.1021/la020954y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Tang, M., J. A. Valdez, K. E. Sickafus y P. Lu. "Order-disorder phase transformation in ion-irradiated rare earth sesquioxides". Applied Physics Letters 90, n.º 15 (9 de abril de 2007): 151907. http://dx.doi.org/10.1063/1.2720716.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Salem, M. Ben, B. Yangui, G. Schiffmacher y C. Boulesteix. "Twinning of the hexagonal (A) structure of rare earth sesquioxides". physica status solidi (a) 87, n.º 2 (16 de febrero de 1985): 527–36. http://dx.doi.org/10.1002/pssa.2210870214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kriklya, A. I. "High-temperature heat capacity of sesquioxides of rare-earth metals". Powder Metallurgy and Metal Ceramics 38, n.º 5-6 (mayo de 1999): 274–77. http://dx.doi.org/10.1007/bf02675775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Fellner, Madeleine, Alberto Soppelsa y Alessandro Lauria. "Heat-Induced Transformation of Luminescent, Size Tuneable, Anisotropic Eu:Lu(OH)2Cl Microparticles to Micro-Structurally Controlled Eu:Lu2O3 Microplatelets". Crystals 11, n.º 8 (20 de agosto de 2021): 992. http://dx.doi.org/10.3390/cryst11080992.

Texto completo
Resumen
Synthetic procedures to obtain size and shape-controlled microparticles hold great promise to achieve structural control on the microscale of macroscopic ceramic- or composite-materials. Lutetium oxide is a material relevant for scintillation due to its high density and the possibility to dope with rare earth emitter ions. However, rare earth sesquioxides are challenging to synthesise using bottom-up methods. Therefore, calcination represents an interesting approach to transform lutetium-based particles to corresponding sesquioxides. Here, the controlled solvothermal synthesis of size-tuneable europium doped Lu(OH)2Cl microplatelets and their heat-induced transformation to Eu:Lu2O3 above 800 °C are described. The particles obtained in microwave solvothermal conditions, and their thermal evolution were studied using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy, thermogravimetric analysis (TGA), luminescence spectroscopy (PL/PLE) and infrared spectroscopy (ATR-IR). The successful transformation of Eu:Lu(OH)2Cl particles into polycrystalline Eu:Lu2O3 microparticles is reported, together with the detailed analysis of their initial and final morphology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Irshad, K. A., N. V. Chandrashekar y S. Kalavathi. "Polymorphism in rare earth sesquioxides: dependence on pressure and cationic radii". Acta Crystallographica Section A Foundations and Advances 73, a2 (1 de diciembre de 2017): C1256. http://dx.doi.org/10.1107/s2053273317083188.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lupascu, D., M. Uhrmacher y K. P. Lieb. "Electric field gradients of111Cd in monoclinic (B-phase) rare earth sesquioxides". Journal of Physics: Condensed Matter 6, n.º 48 (28 de noviembre de 1994): 10445–56. http://dx.doi.org/10.1088/0953-8984/6/48/006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Kolorenč, Jindřich. "Metal-Oxygen Hybridization and Core-Level Spectra in Actinide and Rare-Earth Oxides". MRS Advances 1, n.º 44 (2016): 3007–12. http://dx.doi.org/10.1557/adv.2016.403.

Texto completo
Resumen
ABSTRACT We employ a combination of the density-functional theory and the dynamical mean-field theory to study the electronic structure of selected rare-earth sesquioxides and dioxides. We concentrate on the core-level photoemission spectra, in particular, we illustrate how these spectra reflect the integer or fractional filling of the 4f orbitals. We compare the results to our earlier calculations of actinide dioxides and analyze why the core-level spectra of actinide compounds display a substantially reduced sensitivity to the filling of the 5f orbitals.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Tang, M., P. Lu, J. A. Valdez y K. E. Sickafus. "Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)". Journal of Applied Physics 99, n.º 6 (15 de marzo de 2006): 063514. http://dx.doi.org/10.1063/1.2184433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bezzine, K., N. Benayad, M. Djermouni, S. Kacimi y A. Zaoui. "Enhanced d0 ferromagnetism via carbon doping in rare-earth sesquioxides: DFT prediction". Journal of Magnetism and Magnetic Materials 563 (diciembre de 2022): 169910. http://dx.doi.org/10.1016/j.jmmm.2022.169910.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Bernal, S., F. J. Botana, R. García y J. M. Rodríguez-Izquierdo. "Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water". Reactivity of Solids 4, n.º 1-2 (octubre de 1987): 23–40. http://dx.doi.org/10.1016/0168-7336(87)80085-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Hinteregger, Ernst, Michael Enders, Almut Pitscheider, Klaus Wurst, Gunter Heymann y Hubert Huppertz. "High-pressure Syntheses and Characterization of the Rare-earth Fluoride Borates RE2(BO3)F3 (RE=Tb, Dy, Ho)". Zeitschrift für Naturforschung B 68, n.º 11 (1 de noviembre de 2013): 1198–206. http://dx.doi.org/10.5560/znb.2013-3258.

Texto completo
Resumen
The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Dilawar Sharma, Nita, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra y A. K. Bandyopadhyay. "Pressure-Induced Structural Transition Trends in Nanocrystalline Rare-Earth Sesquioxides: A Raman Investigation". Journal of Physical Chemistry C 120, n.º 21 (23 de mayo de 2016): 11679–89. http://dx.doi.org/10.1021/acs.jpcc.6b02104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Antic, B., A. Kremenovic, I. Draganic, Ph Colomban, D. Vasiljevic-Radovic, J. Blanusa, M. Tadic y M. Mitric. "Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides". Applied Surface Science 255, n.º 17 (junio de 2009): 7601–4. http://dx.doi.org/10.1016/j.apsusc.2009.04.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kimmel, Giora, Roni Z. Shneck, Witold Lojkowski, Ze'ev Porat, Tadeusz Chudoba, Dmitry Mogilyanski, Stanislaw Gierlotka, Vladimir Ezersky y Jacob Zabicky. "Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale". Journal of the American Ceramic Society 102, n.º 7 (18 de marzo de 2019): 3829–35. http://dx.doi.org/10.1111/jace.16396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Sattonnay, G., S. Bilgen, L. Thomé, C. Grygiel, I. Monnet, O. Plantevin, C. Huet, S. Miro y P. Simon. "Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation". physica status solidi (b) 253, n.º 11 (1 de agosto de 2016): 2110–14. http://dx.doi.org/10.1002/pssb.201600451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Frayret, Christine, Antoine Villesuzanne, Michel Pouchard, Fabrice Mauvy, Jean Marc Bassat y Jean Claude Grenier. "A Density Functional Study of Oxygen Mobility in Ceria-Based Materials". Defect and Diffusion Forum 323-325 (abril de 2012): 233–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.233.

Texto completo
Resumen
In CeO2-based solid electrolytes, it has been shown that point defects are directly responsible for oxygen ionic conduction. The ionic conductivity is strongly affected by the anion vacancy concentration which is enhanced by doping with aliovalent cations. When rare earth sesquioxides such as La2O3, Gd2O3, Sm2O3, Y2O3 are added to CeO2, the dopant cation substitutes for the cerium ion, and oxygen vacancies are created for charge compensation. Incorporation of trivalent dopants into CeO2 at the Ce4+ sites can be depicted by the following defect reaction (expressed in Kröger-Vink notation):
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Guo, Bing, Ashley S. Harvey, John Neil, Ian M. Kennedy, Alexandra Navrotsky y Subhash H. Risbud. "Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase". Journal of the American Ceramic Society 90, n.º 11 (noviembre de 2007): 3683–86. http://dx.doi.org/10.1111/j.1551-2916.2007.01961.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Boulesteix, C., M. Ben Salem y B. Yangui. "Domain structures and plasticity of ferroelastic materials: Case of rare earth sesquioxides and YBa2Cu3O7". Journal of the Less Common Metals 156, n.º 1-2 (diciembre de 1989): 29–41. http://dx.doi.org/10.1016/0022-5088(89)90404-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Balamurugan, Sarkarainadar, Ute Ch Rodewald, Thomas Harmening, Leo van Wüllen, Daniel Mohr, Heinz Deters, Hellmut Eckert y Rainer Pöttgen. "PbO / PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals – Structure and Solid-State NMR Spectroscopy". Zeitschrift für Naturforschung B 65, n.º 10 (1 de octubre de 2010): 1199–205. http://dx.doi.org/10.1515/znb-2010-1004.

Texto completo
Resumen
Well-shaped small single crystals of the orthorhombic perovskites YScO3 and LaScO3 were grown from mixtures of the corresponding sesquioxides RE2O3 in PbO/PbF2 fluxes. Both structures were refined from single-crystal diffractometer data: GdFeO3-type, Pnma, a = 570.68(7), b = 789.3(1), c = 542.44(7) pm, wR2 = 0.0363, 448 F2 values for Y0.96ScO2.94, and a = 579.68(9), b = 810.3(2), c = 568.3(1) pm, wR2 = 0.0387, 513 F2 values for La0.94ScO2.91, with 32 variables per refinement. The 4c rare-earth sites of both perovskites show small defects which are charge-compensated by defects on both oxygen sites, leading to the compositions La0.94ScO2.91 and Y0.96ScO2.94 for the investigated crystals. The rare-earth sites have been characterized by 89Y and 45Sc magic-angle spinning (MAS) NMR. The 45Sc quadrupolar interaction parameters extracted from these spectra by simulations are found to be in good agreement with those obtained from DFT calculations of the electric field gradient.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Feng, Xiao, Chunmei Jia, Jing Wang, Xiaocong Cao, Panjuan Tang y Wenbing Yuan. "Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates". Green Chemistry 17, n.º 7 (2015): 3740–45. http://dx.doi.org/10.1039/c5gc00378d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Niehle, Michael y Achim Trampert. "Atomic interface structure of bixbyite rare-earth sesquioxides grown epitaxially on Si(1 1 1)". Journal of Physics D: Applied Physics 45, n.º 29 (2 de julio de 2012): 295302. http://dx.doi.org/10.1088/0022-3727/45/29/295302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Novoselov, A., J. H. Mun, R. Simura, A. Yoshikawa y T. Fukuda. "Micro-pulling-down: A viable approach to the crystal growth of refractory rare-earth sesquioxides". Inorganic Materials 43, n.º 7 (julio de 2007): 729–34. http://dx.doi.org/10.1134/s0020168507070114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Singh, Nirpendra, Sapan Mohan Saini, Tashi Nautiyal y Sushil Auluck. "Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd)". Journal of Applied Physics 100, n.º 8 (15 de octubre de 2006): 083525. http://dx.doi.org/10.1063/1.2353267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

SAIKI, Atsushi, Nobuo ISHIZAWA, Nobuyasu MIZUTANI y Masanori KATO. "Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature". Journal of the Ceramic Association, Japan 93, n.º 1082 (1985): 649–54. http://dx.doi.org/10.2109/jcersj1950.93.1082_649.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Meena, Seema Kumari, Lekhraj Meena, N. L. Heda y B. L. Ahuja. "High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3". Radiation Physics and Chemistry 176 (noviembre de 2020): 108990. http://dx.doi.org/10.1016/j.radphyschem.2020.108990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Abrashev, M. V., N. D. Todorov y J. Geshev. "Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study". Journal of Applied Physics 116, n.º 10 (14 de septiembre de 2014): 103508. http://dx.doi.org/10.1063/1.4894775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Galenin, Evgeny, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha et al. "Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method". Crystals 13, n.º 4 (31 de marzo de 2023): 591. http://dx.doi.org/10.3390/cryst13040591.

Texto completo
Resumen
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Maslen, E. N., V. A. Streltsov y N. Ishizawa. "A synchrotron X-ray study of the electron density in C-type rare earth oxides". Acta Crystallographica Section B Structural Science 52, n.º 3 (1 de junio de 1996): 414–22. http://dx.doi.org/10.1107/s0108768195013371.

Texto completo
Resumen
Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía