Literatura académica sobre el tema "Randomized sketches"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Randomized sketches".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Randomized sketches"
Lian, Heng, Fode Zhang y Wenqi Lu. "Randomized sketches for kernel CCA". Neural Networks 127 (julio de 2020): 29–37. http://dx.doi.org/10.1016/j.neunet.2020.04.006.
Texto completoZhang, Fode, Xuejun Wang, Rui Li y Heng Lian. "Randomized sketches for sparse additive models". Neurocomputing 385 (abril de 2020): 80–87. http://dx.doi.org/10.1016/j.neucom.2019.12.012.
Texto completoChen, Ziling, Haoquan Guan, Shaoxu Song, Xiangdong Huang, Chen Wang y Jianmin Wang. "Determining Exact Quantiles with Randomized Summaries". Proceedings of the ACM on Management of Data 2, n.º 1 (12 de marzo de 2024): 1–26. http://dx.doi.org/10.1145/3639280.
Texto completoPilanci, Mert y Martin J. Wainwright. "Randomized Sketches of Convex Programs With Sharp Guarantees". IEEE Transactions on Information Theory 61, n.º 9 (septiembre de 2015): 5096–115. http://dx.doi.org/10.1109/tit.2015.2450722.
Texto completoYang, Yun, Mert Pilanci y Martin J. Wainwright. "Randomized sketches for kernels: Fast and optimal nonparametric regression". Annals of Statistics 45, n.º 3 (junio de 2017): 991–1023. http://dx.doi.org/10.1214/16-aos1472.
Texto completoXiong, Xianzhu, Rui Li y Heng Lian. "On nonparametric randomized sketches for kernels with further smoothness". Statistics & Probability Letters 153 (octubre de 2019): 139–42. http://dx.doi.org/10.1016/j.spl.2019.06.001.
Texto completoChen, Yuantao, Weihong Xu, Fangjun Kuang y Shangbing Gao. "The Study of Randomized Visual Saliency Detection Algorithm". Computational and Mathematical Methods in Medicine 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/380245.
Texto completoWang, Haibo, Chaoyi Ma, Olufemi O. Odegbile, Shigang Chen y Jih-Kwon Peir. "Randomized error removal for online spread estimation in data streaming". Proceedings of the VLDB Endowment 14, n.º 6 (febrero de 2021): 1040–52. http://dx.doi.org/10.14778/3447689.3447707.
Texto completoDereziński, Michał y Elizaveta Rebrova. "Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition". SIAM Journal on Mathematics of Data Science 6, n.º 1 (21 de febrero de 2024): 127–53. http://dx.doi.org/10.1137/23m1545537.
Texto completoCohen, Edith, Jelani Nelson, Tamas Sarlos y Uri Stemmer. "Tricking the Hashing Trick: A Tight Lower Bound on the Robustness of CountSketch to Adaptive Inputs". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 7235–43. http://dx.doi.org/10.1609/aaai.v37i6.25882.
Texto completoTesis sobre el tema "Randomized sketches"
Wacker, Jonas. "Random features for dot product kernels and beyond". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS241.
Texto completoDot product kernels, such as polynomial and exponential (softmax) kernels, are among the most widely used kernels in machine learning, as they enable modeling the interactions between input features, which is crucial in applications like computer vision, natural language processing, and recommender systems. However, a fundamental drawback of kernel-based statistical models is their limited scalability to a large number of inputs, which requires resorting to approximations. In this thesis, we study techniques to linearize kernel-based methods by means of random feature approximations and we focus on the approximation of polynomial kernels and more general dot product kernels to make these kernels more useful in large scale learning. In particular, we focus on a variance analysis as a main tool to study and improve the statistical efficiency of such sketches
Gower, Robert Mansel. "Sketch and project : randomized iterative methods for linear systems and inverting matrices". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20989.
Texto completoCapítulos de libros sobre el tema "Randomized sketches"
Roy, Subhro, Rahul Chatterjee, Partha Bhowmick y Reinhard Klette. "MAESTRO: Making Art-Enabled Sketches through Randomized Operations". En Computer Analysis of Images and Patterns, 318–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23672-3_39.
Texto completoAndriushchenko, Roman, Milan Češka, Sebastian Junges, Joost-Pieter Katoen y Šimon Stupinský. "PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs". En Computer Aided Verification, 856–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_40.
Texto completoInchausti, Pablo. "The Generalized Linear Model". En Statistical Modeling With R, 189–200. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192859013.003.0008.
Texto completoBevington, Dickon, Peter Fuggle, Liz Cracknell y Peter Fonagy. "Future ambitions for the AMBIT project". En Adaptive Mentalization-Based Integrative Treatment, 374–92. Oxford University Press, 2017. http://dx.doi.org/10.1093/med-psych/9780198718673.003.0011.
Texto completoActas de conferencias sobre el tema "Randomized sketches"
Pilanci, Mert y Martin J. Wainwright. "Randomized sketches of convex programs with sharp guarantees". En 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6874967.
Texto completoChen, Hongwei, Jie Zhao, Qixing Luo y Yajun Hou. "Distributed randomized singular value decomposition using count sketch". En 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, 2017. http://dx.doi.org/10.1109/spac.2017.8304273.
Texto completoAghazade, K., H. Aghamiry, A. Gholami y S. Operto. "Sketched Waveform Inversion (Swi): an Efficient Augmented Lagrangian Based Full-Waveform Inversion with Randomized Source Sketching". En 83rd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2022. http://dx.doi.org/10.3997/2214-4609.202210284.
Texto completo