Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quantum theory.

Artículos de revistas sobre el tema "Quantum theory"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantum theory".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lee, Hyun Seok. "Cultural Studies and Quantum Mechanics". Criticism and Theory Society of Korea 28, n.º 2 (30 de junio de 2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

YF, Chang. "Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications". Physical Science & Biophysics Journal 8, n.º 1 (2 de febrero de 2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.

Texto completo
Resumen
Reconstructing quantum mechanics has been an exploratory direction for physicists. Based on logical structure and basic principles of quantum mechanics, we propose a new method on reconstruction quantum mechanics completely by the waveparticle duality. This is divided into two steps: First, from wave form and duality we obtain the extensive quantum theory, which has the same quantum formulations only with different quantum constants H; then microscopic phenomena determine H=h. Further, we derive the corresponding commutation relation, the uncertainty principle and Heisenberg equation, etc. Then we research potential and interactions in special relativity and general relativity. Finally, various applications and developments, and some basic questions are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bethe, Hans A. "Quantum theory". Reviews of Modern Physics 71, n.º 2 (1 de marzo de 1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wilson, Robin. "Quantum theory". Mathematical Intelligencer 41, n.º 4 (15 de julio de 2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yukalov, V. I. y D. Sornette. "Quantum decision theory as quantum theory of measurement". Physics Letters A 372, n.º 46 (noviembre de 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Yukalov, V. I. y D. Sornette. "Quantum theory of measurements as quantum decision theory". Journal of Physics: Conference Series 594 (18 de marzo de 2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lan, B. L. y S.-N. Liang. "Is Bohm's quantum theory equivalent to standard quantum theory?" Journal of Physics: Conference Series 128 (1 de agosto de 2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hofmann, Ralf. "Quantum Field Theory". Universe 10, n.º 1 (28 de diciembre de 2023): 14. http://dx.doi.org/10.3390/universe10010014.

Texto completo
Resumen
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Green, H. S. "Quantum Theory of Gravitation". Australian Journal of Physics 51, n.º 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Texto completo
Resumen
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hudson, R. L. y L. S. Brown. "Quantum Field Theory". Mathematical Gazette 79, n.º 484 (marzo de 1995): 249. http://dx.doi.org/10.2307/3620134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sorongane, Elie W’ishe. "Quantum Color Theory". Open Journal of Applied Sciences 12, n.º 04 (2022): 517–27. http://dx.doi.org/10.4236/ojapps.2022.124036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Wills, S. "Quantum Information Theory". Irish Mathematical Society Bulletin 0082 (2018): 35–37. http://dx.doi.org/10.33232/bims.0082.35.37.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Flynn, Matthew. "Quantum sock theory". Physics World 8, n.º 5 (mayo de 1995): 72–76. http://dx.doi.org/10.1088/2058-7058/8/5/39.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Bennett, C. H. y P. W. Shor. "Quantum information theory". IEEE Transactions on Information Theory 44, n.º 6 (1998): 2724–42. http://dx.doi.org/10.1109/18.720553.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Wilczek, Frank. "Quantum field theory". Reviews of Modern Physics 71, n.º 2 (1 de marzo de 1999): S85—S95. http://dx.doi.org/10.1103/revmodphys.71.s85.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Rudolph, Oliver. "Temporal quantum theory". Physical Review A 59, n.º 2 (1 de febrero de 1999): 1045–55. http://dx.doi.org/10.1103/physreva.59.1045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 36, n.º 9 (septiembre de 1985): 391. http://dx.doi.org/10.1088/0031-9112/36/9/028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Rauch, Helmut. "Debating quantum theory". Physics World 17, n.º 7 (julio de 2004): 39–40. http://dx.doi.org/10.1088/2058-7058/17/7/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Mandl, F., G. Shaw y Stephen Gasiorowicz. "Quantum Field Theory". Physics Today 38, n.º 10 (octubre de 1985): 111–12. http://dx.doi.org/10.1063/1.2814741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Haag, Rudolf. "On quantum theory". International Journal of Quantum Information 17, n.º 04 (junio de 2019): 1950037. http://dx.doi.org/10.1142/s0219749919500370.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bernstein, Ethan y Umesh Vazirani. "Quantum Complexity Theory". SIAM Journal on Computing 26, n.º 5 (octubre de 1997): 1411–73. http://dx.doi.org/10.1137/s0097539796300921.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Omnès, Roland. "Consistent quantum theory". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34, n.º 2 (junio de 2003): 329–31. http://dx.doi.org/10.1016/s1355-2198(03)00010-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Titani, Satoko y Haruhiko Kozawa. "Quantum Set Theory". International Journal of Theoretical Physics 42, n.º 11 (noviembre de 2003): 2575–602. http://dx.doi.org/10.1023/b:ijtp.0000005977.55748.e4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bacon, Dave. "Populist quantum theory". Nature Physics 4, n.º 7 (julio de 2008): 509–10. http://dx.doi.org/10.1038/nphys1009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Rédei, Miklós y Stephen Jeffrey Summers. "Quantum probability theory". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38, n.º 2 (junio de 2007): 390–417. http://dx.doi.org/10.1016/j.shpsb.2006.05.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Godin, T. J. y Roger Haydock. "Quantum circuit theory". Superlattices and Microstructures 2, n.º 6 (enero de 1986): 597–600. http://dx.doi.org/10.1016/0749-6036(86)90122-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tokuo, Kenji. "Quantum Number Theory". International Journal of Theoretical Physics 43, n.º 12 (diciembre de 2004): 2461–81. http://dx.doi.org/10.1007/s10773-004-7711-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Babelon, O. y L. Bonora. "Quantum Toda theory". Physics Letters B 253, n.º 3-4 (enero de 1991): 365–72. http://dx.doi.org/10.1016/0370-2693(91)91734-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Agarwal, N. S. "New Quantum Theory". Indian Journal of Science and Technology 5, n.º 11 (20 de noviembre de 2012): 1–6. http://dx.doi.org/10.17485/ijst/2012/v5i11.5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Zweifel, Paul F. y Bruce Toomire. "Quantum transport theory". Transport Theory and Statistical Physics 27, n.º 3-4 (abril de 1998): 347–59. http://dx.doi.org/10.1080/00411459808205630.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Friedberg, R. y P. C. Hohenberg. "Compatible quantum theory". Reports on Progress in Physics 77, n.º 9 (22 de agosto de 2014): 092001. http://dx.doi.org/10.1088/0034-4885/77/9/092001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 37, n.º 7 (julio de 1986): 304. http://dx.doi.org/10.1088/0031-9112/37/7/030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

McCall, Storrs. "Axiomatic Quantum Theory". Journal of Philosophical Logic 30, n.º 5 (octubre de 2001): 465–77. http://dx.doi.org/10.1023/a:1012226116310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Unger, H. J. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 187, Part_1 (enero de 1994): 155–56. http://dx.doi.org/10.1524/zpch.1994.187.part_1.155a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Uhlmann, A. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 194, Part_1 (enero de 1996): 130. http://dx.doi.org/10.1524/zpch.1996.194.part_1.130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Aastrup, Johannes y Jesper Møller Grimstrup. "Quantum holonomy theory". Fortschritte der Physik 64, n.º 10 (12 de septiembre de 2016): 783–818. http://dx.doi.org/10.1002/prop.201600073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Schumacher, Benjamin y Michael D. Westmoreland. "Modal Quantum Theory". Foundations of Physics 42, n.º 7 (17 de mayo de 2012): 918–25. http://dx.doi.org/10.1007/s10701-012-9650-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

MacDonald, A. H. y Matthew P. A. Fisher. "Quantum theory of quantum Hall smectics". Physical Review B 61, n.º 8 (15 de febrero de 2000): 5724–33. http://dx.doi.org/10.1103/physrevb.61.5724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hiatt, Christopher. "Quantum traces in quantum Teichmüller theory". Algebraic & Geometric Topology 10, n.º 3 (1 de junio de 2010): 1245–83. http://dx.doi.org/10.2140/agt.2010.10.1245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Doplicher, Sergio. "Quantum Field Theory on Quantum Spacetime". Journal of Physics: Conference Series 53 (1 de noviembre de 2006): 793–98. http://dx.doi.org/10.1088/1742-6596/53/1/051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wiseman, H. M. "Quantum trajectories and quantum measurement theory". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, n.º 1 (febrero de 1996): 205–22. http://dx.doi.org/10.1088/1355-5111/8/1/015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

SORKIN, R. D. "Quantum Gravity: Quantum Theory of Gravity." Science 228, n.º 4699 (3 de mayo de 1985): 572. http://dx.doi.org/10.1126/science.228.4699.572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Dong, Chongying, Xiangyu Jiao y Feng Xu. "Quantum dimensions and quantum Galois theory". Transactions of the American Mathematical Society 365, n.º 12 (20 de agosto de 2013): 6441–69. http://dx.doi.org/10.1090/s0002-9947-2013-05863-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

SORKIN, RAFAEL D. "QUANTUM MECHANICS AS QUANTUM MEASURE THEORY". Modern Physics Letters A 09, n.º 33 (30 de octubre de 1994): 3119–27. http://dx.doi.org/10.1142/s021773239400294x.

Texto completo
Resumen
The additivity of classical probabilities is only the first in a hierarchy of possible sum rules, each of which implies its successor. The first and most restrictive sum rule of the hierarchy yields measure theory in the Kolmogorov sense, which is appropriate physically for the description of stochastic processes such as Brownian motion. The next weaker sum rule defines a generalized measure theory which includes quantum mechanics as a special case. The fact that quantum probabilities can be expressed "as the squares of quantum amplitudes" is thus derived in a natural manner, and a series of natural generalizations of the quantum formalism is delineated. Conversely, the mathematical sense in which classical physics is a special case of quantum physics is clarified. The present paper presents these relationships in the context of a "realistic" interpretation of quantum mechanics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Ying, Mingsheng. "Quantum computation, quantum theory and AI". Artificial Intelligence 174, n.º 2 (febrero de 2010): 162–76. http://dx.doi.org/10.1016/j.artint.2009.11.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Surya, Sumati y Petros Wallden. "Quantum Covers in Quantum Measure Theory". Foundations of Physics 40, n.º 6 (6 de febrero de 2010): 585–606. http://dx.doi.org/10.1007/s10701-010-9419-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Brown, Lowell S., Michio Kaku y O. W. Greenberg. "Quantum Field Theory and Quantum Field Theory: A Modern Introduction". Physics Today 47, n.º 2 (febrero de 1994): 104–6. http://dx.doi.org/10.1063/1.2808409.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

PINTO-NETO, NELSON. "BOUNCING AND QUANTUM THEORY". International Journal of Modern Physics A 26, n.º 22 (10 de septiembre de 2011): 3801–12. http://dx.doi.org/10.1142/s0217751x11054267.

Texto completo
Resumen
In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

PINTO-NETO, NELSON. "BOUNCING AND QUANTUM THEORY". International Journal of Modern Physics: Conference Series 03 (enero de 2011): 183–94. http://dx.doi.org/10.1142/s2010194511001279.

Texto completo
Resumen
In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Unruh, W. G. "Why study quantum theory?" Canadian Journal of Physics 64, n.º 2 (1 de febrero de 1986): 128–30. http://dx.doi.org/10.1139/p86-019.

Texto completo
Resumen
It is argued that the study of the problems associated with quantum mechanics and gravity, and especially those arising from the role of measurement in quantum gravity, have led and will continue to lead to new insights even in ordinary quantum problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía