Literatura académica sobre el tema "Quantum theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Quantum theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Quantum theory"
Lee, Hyun Seok. "Cultural Studies and Quantum Mechanics". Criticism and Theory Society of Korea 28, n.º 2 (30 de junio de 2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.
Texto completoYF, Chang. "Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications". Physical Science & Biophysics Journal 8, n.º 1 (2 de febrero de 2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.
Texto completoBethe, Hans A. "Quantum theory". Reviews of Modern Physics 71, n.º 2 (1 de marzo de 1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.
Texto completoWilson, Robin. "Quantum theory". Mathematical Intelligencer 41, n.º 4 (15 de julio de 2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.
Texto completoYukalov, V. I. y D. Sornette. "Quantum decision theory as quantum theory of measurement". Physics Letters A 372, n.º 46 (noviembre de 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.
Texto completoYukalov, V. I. y D. Sornette. "Quantum theory of measurements as quantum decision theory". Journal of Physics: Conference Series 594 (18 de marzo de 2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.
Texto completoLan, B. L. y S.-N. Liang. "Is Bohm's quantum theory equivalent to standard quantum theory?" Journal of Physics: Conference Series 128 (1 de agosto de 2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.
Texto completoHofmann, Ralf. "Quantum Field Theory". Universe 10, n.º 1 (28 de diciembre de 2023): 14. http://dx.doi.org/10.3390/universe10010014.
Texto completoGreen, H. S. "Quantum Theory of Gravitation". Australian Journal of Physics 51, n.º 3 (1998): 459. http://dx.doi.org/10.1071/p97084.
Texto completoHudson, R. L. y L. S. Brown. "Quantum Field Theory". Mathematical Gazette 79, n.º 484 (marzo de 1995): 249. http://dx.doi.org/10.2307/3620134.
Texto completoTesis sobre el tema "Quantum theory"
Oeckl, Robert. "Quantum geometry and Quantum Field Theory". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621912.
Texto completoMidgley, Stuart. "Quantum waveguide theory". University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Texto completoSchumann, Robert Helmut. "Quantum information theory". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.
Texto completoENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
Shin, Ghi Ryang. "Quantum transport theory". Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.
Texto completoGupta, Neha. "Homotopy quantum field theory and quantum groups". Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/38110/.
Texto completoPoletti, Stephen John. "Geometry, quantum field theory and quantum cosmology". Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315921.
Texto completoKerr, Steven. "Topological quantum field theory and quantum gravity". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.
Texto completoWhitt, Brian. "Gravity : a quantum theory?" Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304522.
Texto completoHamilton, Craig S. "Measurements in quantum theory". Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11885.
Texto completoHele, Timothy John Harvey. "Quantum transition-state theory". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708197.
Texto completoLibros sobre el tema "Quantum theory"
Bongaarts, Peter. Quantum Theory. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09561-5.
Texto completoManning, Phillip. Quantum theory. New York: Chelsea House, 2011.
Buscar texto completoAnastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.
Buscar texto completoAnastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.
Buscar texto completoFriederich, Simon. Interpreting Quantum Theory. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137447159.
Texto completoMandl, F. Quantum field theory. 2a ed. Hoboken, N.J: Wiley, 2010.
Buscar texto completoRyder, Lewis H. Quantum field theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Buscar texto completoItzykson, Claude. Quantum field theory. Maidenhead: McGraw-Hill, 1985.
Buscar texto completoScadron, Michael D. Advanced Quantum Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7.
Texto completoPadmanabhan, Thanu. Quantum Field Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28173-5.
Texto completoCapítulos de libros sobre el tema "Quantum theory"
Gracia-Bondía, José M., Joseph C. Várilly y Héctor Figueroa. "Quantum Theory". En Elements of Noncommutative Geometry, 557–96. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_13.
Texto completoCropper, William H. "Quantum Theory". En Mathermatica® Computer Programs for Physical Chemistry, 69–90. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2204-0_4.
Texto completoStreltsov, Alexander. "Quantum Theory". En SpringerBriefs in Physics, 5–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_2.
Texto completoGlimm, James y Arthur Jaffe. "Quantum Theory". En Quantum Physics, 3–27. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4728-9_1.
Texto completovon Weizsäcker, Carl Friedrich. "Quantum Theory". En SpringerBriefs on Pioneers in Science and Practice, 74–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03668-7_7.
Texto completoSilverman, M. P. y R. L. Mallett. "Quantum Theory". En AIP Physics Desk Reference, 693–724. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_23.
Texto completoOnishi, Taku. "Quantum Theory". En Quantum Computational Chemistry, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_1.
Texto completoWeik, Martin H. "quantum theory". En Computer Science and Communications Dictionary, 1388. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15243.
Texto completoRussell, Travis B. "Quantum Theory". En Mathematics in Cyber Research, 421–52. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-13.
Texto completoGan, Woon Siong. "Quantum Theory". En Quantum Acoustical Imaging, 1–8. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_1.
Texto completoActas de conferencias sobre el tema "Quantum theory"
Mardari, Ghenadie N., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Understanding Quanta Beyond Quantum Mechanics". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827318.
Texto completoGrib, A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Quantum Logic and Macroscopic Quantum Games". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827341.
Texto completoJaeger, Gregg, Kevin Ann, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Decoherence, Disentanglement and Foundations of Quantum Mechanics". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827292.
Texto completoKhrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Prequantum Classical Statistical Field Theory—PCSFT". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827293.
Texto completoKhrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables?" En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827294.
Texto completoMan'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Tomographic Entropy and New Entropic Uncertainty Relations". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.
Texto completoMan'ko, Vladimir I., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Probability Instead of Wave Function and Bell Inequalities as Entanglement Criterion". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827296.
Texto completoNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "The Pullback Mechanism in Stochastic Electrodynamics". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827297.
Texto completoNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.
Texto completoAccardi, Luigi, Satoshi Uchiyama, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko y Theo M. Nieuwenhuizen. "Universality of the EPR-chameleon model". En Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827299.
Texto completoInformes sobre el tema "Quantum theory"
Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), marzo de 2021. http://dx.doi.org/10.2172/1846570.
Texto completoAdami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2007. http://dx.doi.org/10.21236/ada490967.
Texto completoJaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), febrero de 2006. http://dx.doi.org/10.2172/891184.
Texto completoCaldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), marzo de 1993. http://dx.doi.org/10.2172/10165764.
Texto completoChudnovsky, Eugene M. Quantum Theory of Molecular Nanomagnets. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2001. http://dx.doi.org/10.21236/ada387444.
Texto completoHirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.
Texto completoLawrence, Albion, Matthew Headrick, Howard Schnitzer, Bogdan Stoica, Djordje Radicevic, Harsha Hampapura, Andrew Rolph, Jonathan Harper y Cesar Agon. Research in Quantum Field Theory, Cosmology, and String Theory. Office of Scientific and Technical Information (OSTI), marzo de 2020. http://dx.doi.org/10.2172/1837060.
Texto completoZurek, Wojciech H. Quantum Theory of the Classical: Einselection, Envariance, and Quantum Darwinism. Office of Scientific and Technical Information (OSTI), abril de 2013. http://dx.doi.org/10.2172/1073733.
Texto completoLight, John C. Quantum Theory of Fast Chemical Reactions. Office of Scientific and Technical Information (OSTI), julio de 2007. http://dx.doi.org/10.2172/910303.
Texto completoHeifets, Samuel A. Quantum Theory of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), diciembre de 2000. http://dx.doi.org/10.2172/784782.
Texto completo