Artículos de revistas sobre el tema "Quantum ratchet"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quantum ratchet.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantum ratchet".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Linke, H. "Experimental Quantum Ratchets based on Solid State Nanostructures". Australian Journal of Physics 52, n.º 5 (1999): 895. http://dx.doi.org/10.1071/ph99012.

Texto completo
Resumen
Ratchets are spatially asymmetric devices in which particles can move on average in one direction in the absence of external net forces or gradients. This is made possible by the rectification of fluctuations, which also provide the energy for the process. Interest in the physics of ratchets was revived in recent years when it emerged that the ratchet principle may be a suitable physical model for ‘molecular motors’, which are central to many fundamental biological processes, such as intracellular transport or muscle contraction. Most ratchets studied so far have relied on classical effects, but recently ‘quantum ratchets’, involving quantum effects, have also been studied. In the present article it is pointed out that semiconductor or metal nanostructures are very suitable systems for the realisation of experimental quantum ratchets. Recent experimental studies of a quantum ratchet based on an asymmetric quantum dot are reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

DANA, I., V. B. ROITBERG, V. RAMAREDDY, I. TALUKDAR y G. S. SUMMY. "QUANTUM-RESONANCE RATCHETS: THEORY AND EXPERIMENT". International Journal of Bifurcation and Chaos 20, n.º 02 (febrero de 2010): 255–61. http://dx.doi.org/10.1142/s0218127410025697.

Texto completo
Resumen
A theory of quantum ratchets for a particle periodically kicked by a general periodic potential under quantum-resonance conditions is developed for arbitrary values of the conserved quasimomentum β. A special case of this theory is experimentally realized using a Bose–Einstein condensate (BEC) exposed to a pulsed standing light wave. While this case corresponds to completely symmetric potential and initial wave-packet, a purely quantum ratchet effect still arises from the generic noncoincidence of the symmetry centers of these two entities. The experimental results agree well with the theory after taking properly into account the finite quasimomentum width of the BEC. This width causes a suppression of the ratchet acceleration occurring for "resonant" β, so that the mean momentum saturates to a finite ratchet velocity, strongly pronounced relative to that for nonresonant β.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Salger, Tobias, Sebastian Kling, Tim Hecking, Carsten Geckeler, Luis Morales-Molina y Martin Weitz. "Directed Transport of Atoms in a Hamiltonian Quantum Ratchet". Science 326, n.º 5957 (26 de noviembre de 2009): 1241–43. http://dx.doi.org/10.1126/science.1179546.

Texto completo
Resumen
Classical ratchet potentials, which alternate a driving potential with periodic random dissipative motion, can account for the operation of biological motors. We demonstrate the operation of a quantum ratchet, which differs from classical ratchets in that dissipative processes are absent within the observation time of the system (Hamiltonian regime). An atomic rubidium Bose-Einstein condensate is exposed to a sawtooth-like optical lattice potential, whose amplitude is periodically modulated in time. The ratchet transport arises from broken spatiotemporal symmetries of the driven potential, resulting in a desymmetrization of transporting eigenstates (Floquet states). The full quantum character of the ratchet transport was demonstrated by the measured atomic current oscillating around a nonzero stationary value at longer observation times, resonances occurring at positions determined by the photon recoil, and dependence of the transport current on the initial phase of the driving potential.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yukawa, Satoshi, Gen Tatara, Makoto Kikuchi y Hiroshi Matsukawa. "Quantum ratchet". Physica B: Condensed Matter 284-288 (julio de 2000): 1896–97. http://dx.doi.org/10.1016/s0921-4526(99)02982-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chen, Lei, Zhen-Yu Wang, Wu Hui, Cheng-Yu Chu, Ji-Min Chai, Jin Xiao, Yu Zhao y Jin-Xiang Ma. "Quantum ratchet effect in a time non-uniform double-kicked model". International Journal of Modern Physics B 31, n.º 16-19 (26 de julio de 2017): 1744063. http://dx.doi.org/10.1142/s0217979217440635.

Texto completo
Resumen
The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ghosh, Pulak Kumar y Deb Shankar Ray. "An underdamped quantum ratchet". Journal of Statistical Mechanics: Theory and Experiment 2007, n.º 03 (2 de marzo de 2007): P03003. http://dx.doi.org/10.1088/1742-5468/2007/03/p03003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Long, Gui-Lu y Tian-Cai Zhang. "Quantum ratchet with photons". Science Bulletin 60, n.º 2 (enero de 2015): 278. http://dx.doi.org/10.1007/s11434-014-0721-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Chakraborty, Sagnik, Arpan Das, Arindam Mallick y C. M. Chandrashekar. "Quantum Ratchet in Disordered Quantum Walk". Annalen der Physik 529, n.º 8 (4 de julio de 2017): 1600346. http://dx.doi.org/10.1002/andp.201600346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chen, Lei, Chao Xiong, Jin Xiao y Hong Chun Yuan. "Ratchet Effect in a Triple Delta-Kicked Model". Applied Mechanics and Materials 687-691 (noviembre de 2014): 692–95. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.692.

Texto completo
Resumen
We investigate the quantum ratchet effect in a triple delta-kicked model. Three symmetric flashing potentials alternately act on a particle with a symmetric and homogeneous initial state of zero momentum. Ratchet currents emerge when quantum resonances are excited. Ratchet currents in the triple model may be stronger than those in the previous model. Our work expands upon the quantum delta-kicked model and may contribute to experimental investigation of the quantum transport of cold atoms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chen, Lei, Chao Xiong, Jin Xiao y Hong Chun Yuan. "Multi-Frequency Delta-Kicked Models for the Quantum Ratchet Effect". Advanced Materials Research 1049-1050 (octubre de 2014): 1431–35. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.1431.

Texto completo
Resumen
We investigate two multi-frequency delta-kicked models for the quantum ratchet effect, in which a flashing multi-frequency potential periodically acts on a particle. Ratchet currents emerge when quantum resonances are excited. Currents in multi-frequency models may be stronger than those in the previous two-frequency model. Our work expands upon the quantum delta-kicked model and may contribute to experimental investigation of the quantum transport of cold atoms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

SHRESTHA, R. K., W. K. LAM, J. NI y G. S. SUMMY. "A COLD-ATOM RATCHET INTERPOLATING BETWEEN CLASSICAL AND QUANTUM DYNAMICS". Fluctuation and Noise Letters 12, n.º 02 (junio de 2013): 1340003. http://dx.doi.org/10.1142/s0219477513400038.

Texto completo
Resumen
We use an atomic ratchet realized by applying short pulses of an optical standing-wave to a Bose–Einstein condensate to study the crossover between classical and quantum dynamics. The signature of the ratchet is the existence of a directed current of atoms, even though there is an absence of a net bias force. Provided that the pulse period is close to one of the resonances of the system, the ratchet behavior can be understood using a classical like theory which depends on a single variable containing many of the experimental parameters. Here we show that this theory is valid in both the true classical limit, when the pulse period is close to zero, as well as regimes when this period is close to other resonances where the usual scaled Planck's constant is nonzero. By smoothly changing the pulse period between these resonances we demonstrate how it is possible to tune the ratchet between quantum and classical types of behavior.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Makarov, D. V. y L. E. Konʼkov. "Quantum ratchet driven by broadband perturbation". Physics Letters A 377, n.º 43 (diciembre de 2013): 3093–97. http://dx.doi.org/10.1016/j.physleta.2013.09.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Drexler, C., S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra et al. "Magnetic quantum ratchet effect in graphene". Nature Nanotechnology 8, n.º 2 (20 de enero de 2013): 104–7. http://dx.doi.org/10.1038/nnano.2012.231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Zhang, Chi, Chuan-Feng Li y Guang-Can Guo. "Experimental demonstration of photonic quantum ratchet". Science Bulletin 60, n.º 2 (enero de 2015): 249–55. http://dx.doi.org/10.1007/s11434-014-0710-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Rajendran, Jishnu y Colin Benjamin. "Implementing Parrondo’s paradox with two-coin quantum walks". Royal Society Open Science 5, n.º 2 (febrero de 2018): 171599. http://dx.doi.org/10.1098/rsos.171599.

Texto completo
Resumen
Parrondo’s paradox is ubiquitous in games, ratchets and random walks. The apparent paradox, devised by J. M. R. Parrondo, that two losing games A and B can produce a winning outcome has been adapted in many physical and biological systems to explain their working. However, proposals on demonstrating Parrondo’s paradox using quantum walks failed for a large number of steps. In this work, we show that instead of a single coin if we consider a two-coin initial state which may or may not be entangled, we can observe a genuine Parrondo’s paradox with quantum walks. Furthermore, we focus on reasons for this and pin down the asymmetry in initial two-coin state or asymmetry in shift operator, either of which is necessary for observing a genuine Parrondo’s paradox. We extend our work to a three-coin initial state too with similar results. The implications of our work for observing quantum ratchet-like behaviour using quantum walks are also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Chen, Lei, Chuan-Feng Li, Ming Gong y Guang-Can Guo. "Quantum Parrondo game based on a quantum ratchet effect". Physica A: Statistical Mechanics and its Applications 389, n.º 19 (octubre de 2010): 4071–74. http://dx.doi.org/10.1016/j.physa.2010.06.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhao Wen-Lei, Dou Fu-Quan y Wang Jian-Zhong. "Effects of nonlinearity on quantum resonance ratchet". Acta Physica Sinica 61, n.º 22 (2012): 220503. http://dx.doi.org/10.7498/aps.61.220503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ganichev, S. D., S. A. Tarasenko, J. Karch, J. Kamann y Z. D. Kvon. "Magnetic quantum ratchet effect in Si-MOSFETs". Journal of Physics: Condensed Matter 26, n.º 25 (3 de junio de 2014): 255802. http://dx.doi.org/10.1088/0953-8984/26/25/255802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Linke, H., W. Sheng, A. Löfgren, Hongqi Xu, P. Omling y P. E. Lindelof. "A quantum dot ratchet: Experiment and theory". Europhysics Letters (EPL) 44, n.º 3 (1 de noviembre de 1998): 341–47. http://dx.doi.org/10.1209/epl/i1998-00562-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Linke, H., W. Löfgren, Hongqi Xu, P. Omling y P. E. Lindelof. "A quantum dot ratchet: Experiment and theory". Europhysics Letters (EPL) 45, n.º 3 (1 de febrero de 1999): 406. http://dx.doi.org/10.1209/epl/i1999-00179-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Morales-Molina, L., S. Flach y J. B. Gong. "Quantum ratchet control—Harvesting on Landau-Zener transitions". EPL (Europhysics Letters) 83, n.º 4 (agosto de 2008): 40005. http://dx.doi.org/10.1209/0295-5075/83/40005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Higgins, K. D. B., B. W. Lovett y E. M. Gauger. "Quantum-Enhanced Capture of Photons Using Optical Ratchet States". Journal of Physical Chemistry C 121, n.º 38 (12 de septiembre de 2017): 20714–19. http://dx.doi.org/10.1021/acs.jpcc.7b07138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Qu Chun-Lei y Zhao Qing. "Quantum-resonance ratchet in a kicked Bose-Einstein condensate". Acta Physica Sinica 58, n.º 7 (2009): 4390. http://dx.doi.org/10.7498/aps.58.4390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ivchenko, E. L. y S. D. Ganichev. "Ratchet effects in quantum wells with a lateral superlattice". JETP Letters 93, n.º 11 (agosto de 2011): 673–82. http://dx.doi.org/10.1134/s002136401111004x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chen, Lei, Chuan-Feng Li, Ming Gong y Guang-Can Guo. "Entropy in quantum ratchet for a delta-kicked model". Physica A: Statistical Mechanics and its Applications 388, n.º 20 (octubre de 2009): 4328–32. http://dx.doi.org/10.1016/j.physa.2009.07.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Chen, Lei, Chao Xiong, Hong-Chun Yuan y Li-Hua Ding. "A delta-kicked model for the quantum ratchet effect". Physica A: Statistical Mechanics and its Applications 398 (marzo de 2014): 83–88. http://dx.doi.org/10.1016/j.physa.2013.12.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Spiechowicz, Jakub y Jerzy Łuczka. "Josephson phase diffusion in the superconducting quantum interference device ratchet". Chaos: An Interdisciplinary Journal of Nonlinear Science 25, n.º 5 (mayo de 2015): 053110. http://dx.doi.org/10.1063/1.4921211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chen, Lei, Chao Xiong, Jin Xiao y Hong-Chun Yuan. "A time-asymmetric delta-kicked model for the quantum ratchet effect". Physica A: Statistical Mechanics and its Applications 416 (diciembre de 2014): 225–30. http://dx.doi.org/10.1016/j.physa.2014.08.071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Peguiron, J. y M. Grifoni. "Quantum Brownian motion in ratchet potentials: Duality relation and its consequences". Chemical Physics 322, n.º 1-2 (marzo de 2006): 169–86. http://dx.doi.org/10.1016/j.chemphys.2005.07.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

CARUSELA, M. F., A. J. FENDRIK y L. ROMANELLI. "INDUCED CURRENT IN QUANTUM AND CLASSICAL RATCHETS". International Journal of Bifurcation and Chaos 20, n.º 02 (febrero de 2010): 263–69. http://dx.doi.org/10.1142/s0218127410025703.

Texto completo
Resumen
In a previous work, we described transport in a classical, externally driven, overdamped ratchet. A transport current arises under two possible conditions: either by increasing the external driving or by adding an optimal amount of noise when the system operates below threshold. In this work, we study the underdamped case. In order to obtain transport it is necessary for the presence of both — a damping mechanism and the lack of symmetries in the potential. Some interesting properties were found: under particular conditions the system could be considered as a mass separation device, and for a specific range of the control parameter, the maximum Lyapunov exponent is reduced when noise is added to the system. We also study analytically and numerically the quantum analog of the same system and explore the conditions to find transport.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Linke, H. "Voltage and temperature limits for the operation of a quantum dot ratchet". Physica B: Condensed Matter 272, n.º 1-4 (1 de diciembre de 1999): 61–63. http://dx.doi.org/10.1016/s0921-4526(99)00370-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Balzer, K. y M. Eckstein. "Field-assisted doublon manipulation in the Hubbard model: A quantum doublon ratchet". EPL (Europhysics Letters) 107, n.º 5 (1 de septiembre de 2014): 57012. http://dx.doi.org/10.1209/0295-5075/107/57012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Luca, R. De. "Ratchet potential in superconducting quantum interference devices containing a double-barrier junction". Superconductor Science and Technology 22, n.º 10 (23 de septiembre de 2009): 109801. http://dx.doi.org/10.1088/0953-2048/22/10/109801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

De Luca, R. "Ratchet potential in superconducting quantum interference devices containing a double-barrier junction". Superconductor Science and Technology 22, n.º 8 (15 de julio de 2009): 085008. http://dx.doi.org/10.1088/0953-2048/22/8/085008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Faltermeier, P., G. V. Budkin, S. Hubmann, V. V. Bel'kov, L. E. Golub, E. L. Ivchenko, Z. Adamus et al. "Circular and linear magnetic quantum ratchet effects in dual-grating-gate CdTe-based nanostructures". Physica E: Low-dimensional Systems and Nanostructures 101 (julio de 2018): 178–87. http://dx.doi.org/10.1016/j.physe.2018.04.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Zhang, Emily Z. y Jacob J. Krich. "Efficiency limits of electronically coupled upconverter and quantum ratchet solar cells using detailed balance". Journal of Applied Physics 127, n.º 21 (7 de junio de 2020): 213105. http://dx.doi.org/10.1063/5.0005416.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kato, Akihito y Yoshitaka Tanimura. "Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force". Journal of Physical Chemistry B 117, n.º 42 (16 de mayo de 2013): 13132–44. http://dx.doi.org/10.1021/jp403056h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Pusch, Andreas, Megumi Yoshida, Nicholas P. Hylton, Alexander Mellor, Chris C. Phillips, Ortwin Hess y Nicholas J. Ekins‐Daukes. "Limiting efficiencies for intermediate band solar cells with partial absorptivity: the case for a quantum ratchet". Progress in Photovoltaics: Research and Applications 24, n.º 5 (10 de febrero de 2016): 656–62. http://dx.doi.org/10.1002/pip.2751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sahoo, G. S. y G. P. Mishra. "Use of ratchet band in a quantum dot embedded intermediate band solar cell to enrich the photo response". Materials Letters 218 (mayo de 2018): 139–41. http://dx.doi.org/10.1016/j.matlet.2018.01.139.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Sahoo, Girija Shankar y Guru Prasad Mishra. "Effect of impact ionization on the performance of quantum ratchet embedded intermediate band solar cell: An extensive simulation study". Optik 199 (diciembre de 2019): 163382. http://dx.doi.org/10.1016/j.ijleo.2019.163382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Sahoo, Girija Shankar y Guru Prasad Mishra. "Use of InGaAs/GaSb Quantum Ratchet in p-i-n GaAs Solar Cell for Voltage Preservation and Higher Conversion Efficiency". IEEE Transactions on Electron Devices 66, n.º 1 (enero de 2019): 153–59. http://dx.doi.org/10.1109/ted.2018.2859766.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Reimann, Peter, Milena Grifoni y Peter Hänggi. "Quantum Ratchets". Physical Review Letters 79, n.º 1 (7 de julio de 1997): 10–13. http://dx.doi.org/10.1103/physrevlett.79.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Yukawa, Satoshi, Macoto Kikuchi, Gen Tatara y Hiroshi Matsukawa. "Quantum Ratchets". Journal of the Physical Society of Japan 66, n.º 10 (15 de octubre de 1997): 2953–56. http://dx.doi.org/10.1143/jpsj.66.2953.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Yukawa, Satoshi, Macoto Kikuchi, Gen Tatara y Hiroshi Matsukawa. "Quantum Ratchets". Journal of the Physical Society of Japan 66, n.º 12 (15 de diciembre de 1997): 4055. http://dx.doi.org/10.1143/jpsj.66.4055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Linke, H., Weidong Sheng, A. Löfgren, A. Svensson, Hongqi Xu, P. Omling y P. E. Lindelof. "Electron quantum ratchets". Microelectronic Engineering 47, n.º 1-4 (junio de 1999): 265–67. http://dx.doi.org/10.1016/s0167-9317(99)00210-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Denisov, S., S. Kohler y P. Hänggi. "Underdamped quantum ratchets". EPL (Europhysics Letters) 85, n.º 4 (febrero de 2009): 40003. http://dx.doi.org/10.1209/0295-5075/85/40003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Linke, H., T. E. Humphrey, P. E. Lindelof, A. Löfgren, R. Newbury, P. Omling, A. O. Sushkov, R. P. Taylor y H. Xu. "Quantum ratchets and quantum heat pumps". Applied Physics A 75, n.º 2 (agosto de 2002): 237–46. http://dx.doi.org/10.1007/s003390201335.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Hänggi, Peter y Peter Reimann. "Quantum ratchets reroute electrons". Physics World 12, n.º 3 (marzo de 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/3/22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Linke, H., T. E. Humphrey, R. P. Taylor, R. P. Taylor, A. P. Micolich, A. P. Micolich y R. Newbury. "Chaos in Quantum Ratchets". Physica Scripta T90, n.º 1 (2001): 54. http://dx.doi.org/10.1238/physica.topical.090a00054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zueco, D. y J. L. García-Palacios. "Quantum ratchets at high temperatures". Physica E: Low-dimensional Systems and Nanostructures 29, n.º 1-2 (octubre de 2005): 435–41. http://dx.doi.org/10.1016/j.physe.2005.05.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía