Literatura académica sobre el tema "Quantum molecule"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Quantum molecule".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Quantum molecule"
Fatma Gen, Fatma Gen y Hanan Bsehen and Fatma Kandemirli Hanan Bsehen and Fatma Kandemirli. "Quantum Chemical Studies of Carbazochrome Molecule". Journal of the chemical society of pakistan 44, n.º 2 (2022): 109. http://dx.doi.org/10.52568/000997/jcsp/44.02.2022.
Texto completoLiza, Nishattasnim, Dylan Murphey, Peizhong Cong, David W. Beggs, Yuihui Lu y Enrique P. Blair. "Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata". Nanotechnology 33, n.º 11 (21 de diciembre de 2021): 115201. http://dx.doi.org/10.1088/1361-6528/ac40c0.
Texto completoTakatsuka, Kazuo. "Quantum Chaos in the Dynamics of Molecules". Entropy 25, n.º 1 (29 de diciembre de 2022): 63. http://dx.doi.org/10.3390/e25010063.
Texto completoTamulis, Arvydas, Vykintas Tamulis y Aiste Ziriakoviene. "Quantum Mechanical Design of Molecular Computers Elements Suitable for Self-Assembling to Quantum Computing Living Systems". Solid State Phenomena 97-98 (abril de 2004): 173–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.97-98.173.
Texto completoTACHIKAWA, MASANORI y MOTOYUKI SHIGA. "AB INITIO PATH INTEGRAL STUDY ON ISOTOPE EFFECT OF AMMONIA MOLECULE". Journal of Theoretical and Computational Chemistry 04, n.º 01 (marzo de 2005): 175–81. http://dx.doi.org/10.1142/s0219633605001337.
Texto completoLozovik, Yu E. y N. E. Kaputkina. "Quantum Dot “Molecule”". Physica Scripta 57, n.º 4 (1 de abril de 1998): 542–44. http://dx.doi.org/10.1088/0031-8949/57/4/013.
Texto completoMörschel, Philipp y Martin U. Schmidt. "Prediction of molecular crystal structures by a crystallographic QM/MM model with full space-group symmetry". Acta Crystallographica Section A Foundations and Advances 71, n.º 1 (1 de enero de 2015): 26–35. http://dx.doi.org/10.1107/s2053273314018907.
Texto completoYao, Jie y Ai-Di Zhao. "Advances in detection and regulation of surface-supported molecular quantum states". Acta Physica Sinica 71, n.º 6 (2022): 060701. http://dx.doi.org/10.7498/aps.71.20212324.
Texto completoSinhal, Mudit, Ziv Meir, Kaveh Najafian, Gregor Hegi y Stefan Willitsch. "Quantum-nondemolition state detection and spectroscopy of single trapped molecules". Science 367, n.º 6483 (12 de marzo de 2020): 1213–18. http://dx.doi.org/10.1126/science.aaz9837.
Texto completoMAITI, SANTANU K. y S. N. KARMAKAR. "QUANTUM TRANSPORT THROUGH HETEROCYCLIC MOLECULES". International Journal of Modern Physics B 23, n.º 02 (20 de enero de 2009): 177–87. http://dx.doi.org/10.1142/s021797920904970x.
Texto completoTesis sobre el tema "Quantum molecule"
Koch, Jens. "Quantum transport through single molecule devices". [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/380/index.html.
Texto completoHussain, A. "Time-dependent quantum dynamics of molecule predissociation". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604841.
Texto completoSimmons, Christie. "The Quantum Dynamics of H2 in a C60 Lattice". Oberlin College Honors Theses / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1125601106.
Texto completoYe, Lin Holder Andrew J. "Application of quantum mechanical QSAR to dental molecule design". Diss., UMK access, 2007.
Buscar texto completo"A dissertation in chemistry and pharmaceutical science." Advisor: Andrew J. Holder. Typescript. Vita. Description based on contents viewed Apr. 15, 2008; title from "catalog record" of the print edition. Includes bibliographical references (leaves 89-93). Online version of the print edition.
Halstead, David Michael. "Time dependent quantum methods applied to molecule-surface interactions". Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303642.
Texto completoKrüger, Bastian Christopher. "From diatomic to polyatomic quantum-state-resolved molecule-surface scattering". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3F1E-7.
Texto completoBarry, John F. "Laser cooling and slowing of a diatomic molecule". Thesis, Yale University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3578337.
Texto completoLaser cooling and trapping are central to modern atomic physics. It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields and a number of Nobel prizes. Prior to the work presented in this thesis, laser cooling had not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for a wide range of applications. The first direct laser cooling of a molecule and further results we present here provide a new route to ultracold temperatures for molecules. In particular, these methods bridge the gap between ultracold temperatures and the approximately 1 kelvin temperatures attainable with directly cooled molecules (e.g. with cryogenic buffer gas cooling or decelerated supersonic beams). Using the carefully chosen molecule strontium monofluoride (SrF), decays to unwanted vibrational states are suppressed. Driving a transition with rotational quantum number R=1 to an excited state with R'=0 eliminates decays to unwanted rotational states. The dark ground-state Zeeman sublevels present in this specific scheme are remixed via a static magnetic field. Using three lasers for this scheme, a given molecule should undergo an average of approximately 100,000 photon absorption/emission cycles before being lost via unwanted decays. This number of cycles should be sufficient to load a magneto-optical trap (MOT) of molecules. In this thesis, we demonstrate transverse cooling of an SrF beam, in both Doppler and a Sisyphus-type cooling regimes. We also realize longitudinal slowing of an SrF beam. Finally, we detail current progress towards trapping SrF in a MOT. Ultimately, this technique should enable the production of large samples of molecules at ultracold temperatures for molecules chemically distinct from competing methods.
Lane, Lucas A. "Advancement of blinking suppressed quantum dots for enhanced single molecule imaging". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54023.
Texto completoWolter, Anja U. B. "Longitudinal and transverse magnetization in low-dimensional molecule-based quantum magnets". [S.l.] : [s.n.], 2006. http://www.digibib.tu-bs.de/?docid=00000066.
Texto completoElste, Florian [Verfasser]. "Quantum transport through single-molecule devices: spin and vibration / Florian Elste". Berlin : Freie Universität Berlin, 2008. http://d-nb.info/1023023474/34.
Texto completoLibros sobre el tema "Quantum molecule"
Craig, D. P. Molecular quantum electrodynamics: An introduction to radiation-molecule interactions. Mineola, N.Y: Dover Publications, 1998.
Buscar texto completoMorello, Andrea. Quantum spin dynamics in single-molecule magnets. [S.l: s.n.], 2004.
Buscar texto completoNano: The emerging science of nanotechnology : remaking the world-molecule by molecule. Boston: Little, Brown, 1995.
Buscar texto completoKaila, M. M. Molecular Imaging of the Brain: Using Multi-Quantum Coherence and Diagnostics of Brain Disorders. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoLorente, Nicolas. Architecture and Design of Molecule Logic Gates and Atom Circuits: Proceedings of the 2nd AtMol European Workshop. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoWu, Jiang y Zhiming M. Wang, eds. Quantum Dot Molecules. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8130-0.
Texto completoSalam, Akbar. Molecular Quantum Electrodynamics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470535462.
Texto completoGatti, Fabien, ed. Molecular Quantum Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45290-1.
Texto completoAtkins, P. W. Molecular quantum mechanics. 3a ed. New York: Oxford University Press, 1996.
Buscar texto completoAtkins, P. W. Molecular quantum mechanics. 2a ed. Oxford [Oxfordshire]: Oxford University Press, 1987.
Buscar texto completoCapítulos de libros sobre el tema "Quantum molecule"
Onishi, Taku. "Molecular Orbital Calculation of Diatomic Molecule". En Quantum Computational Chemistry, 113–57. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_8.
Texto completoFai, Lukong Cornelius. "Approximate Method for the Hydrogen Molecule". En Quantum Mechanics, 299–304. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003273073-12.
Texto completoGanzhorn, Marc y Wolfgang Wernsdorfer. "Molecular Quantum Spintronics Using Single-Molecule Magnets". En NanoScience and Technology, 319–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40609-6_13.
Texto completoTaran, Gheorghe, Edgar Bonet y Wolfgang Wernsdorfer. "Single-Molecule Magnets and Molecular Quantum Spintronics". En Handbook of Magnetism and Magnetic Materials, 979–1009. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_18.
Texto completoArndt, M., L. Hackermüller, K. Hornberger y A. Zeilinger. "Organic Molecules and Decoherence Experiments in a Molecule Interferometer". En Multiscale Methods in Quantum Mechanics, 1–10. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8202-6_1.
Texto completoKornilovitch, Pavel. "Single-Molecule Conformational Switches". En Molecular Nanowires and Other Quantum Objects, 21–28. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2093-3_3.
Texto completoThal, Lucas B., Oleg Kovtun y Sandra J. Rosenthal. "Labeling Neuronal Proteins with Quantum Dots for Single-Molecule Imaging". En Quantum Dots, 169–77. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2_9.
Texto completoNelson, Shane R., M. Yusuf Ali y David M. Warshaw. "Quantum Dot Labeling Strategies to Characterize Single-Molecular Motors". En Single Molecule Enzymology, 111–21. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-261-8_8.
Texto completoGatteschi, D., R. Sessoli y W. Wernsdorfer. "Quantum Effects in the Dynamics of the Magnetization in Single Molecule Magnets". En Macroscopic Quantum Coherence and Quantum Computing, 215–23. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1245-5_22.
Texto completoKamandar Dezfouli, Mohsen y Stephen Hughes. "Quantum Optical Theories of Molecular Optomechanics". En Single Molecule Sensing Beyond Fluorescence, 163–204. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90339-8_5.
Texto completoActas de conferencias sobre el tema "Quantum molecule"
Goun, Alexei. "Binding energy of photonic molecule". En International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithg26.
Texto completoCarfagno, Henry, Lauren McCabe, Joshua Zide y Matthew Doty. "InAs Quantum Dot Molecule based Scalable Materials Platform". En Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw2a.31.
Texto completoCarter, Samuel G., Bumsu Lee, Brennan C. Pursley, Sophia E. Economou, Michael K. Yakes, Allan S. Bracker y Dan Gammon. "Quantum Optics of a Driven Quantum Dot Molecule". En Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.ftu5f.4.
Texto completoLyshevski, Sergey Edward. "Quantum-mechanical analysis of single molecule quantum electronic devices". En 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144378.
Texto completoBabkov, Lev M., Pavel M. Elkin, I. I. Gnatyuk, Jan I. Kukielski, Galyna A. Puchkovskaya y Kirill E. Uspenskiy. "Quantum mechanical investigation of ethylcyanobiphenyl molecule". En SPIE Proceedings, editado por Vladimir L. Derbov, Leonid A. Melnikov y Lev M. Babkov. SPIE, 2004. http://dx.doi.org/10.1117/12.578922.
Texto completoSESSOLI, R., A. CANESCHI, D. GATTESCHI, C. SANGREGORIO, A. CORNIA y W. WERNSDORFER. "QUANTUM EFFECTS IN SINGLE-MOLECULE NANOMAGNETS". En Proceedings of the International Symposium. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793805_0018.
Texto completoSandoghdar, Vahid y Stephan Gotzinger. "Singe-photon-single-molecule Quantum Optics". En Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw1c.1.
Texto completoRezus, Y. A. L., S. Walt, G. Zumofen, A. Renn, S. Gotzinger y V. Sandoghdar. "Spectroscopy of a single molecule using single photons emitted by another molecule". En 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943371.
Texto completoHwang, J., M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gotzinger y V. Sandoghdar. "A single-molecule optical transistor". En 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5191550.
Texto completoGrandi, Samuele, Michael Nielsen, Javier Cambiasso, Sebastien Boissier, Kyle D. Major, Christopher Reardon, Thomas F. Krauss, Rupert F. Oulton, E. A. Hinds y Alex Clark. "Hybrid plasmonic waveguide coupled to a single organic molecule (Conference Presentation)". En Quantum Technologies, editado por Andrew J. Shields, Jürgen Stuhler y Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2306890.
Texto completoInformes sobre el tema "Quantum molecule"
Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab y Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), octubre de 2007. http://dx.doi.org/10.2172/921751.
Texto completoBarnes, Edwin, Sophia Economou, Nicholas Mayhall y Kyungwha Park. Ab Initio Quantum Information Processor Design with Single-Molecule Magnets: a Multiscale Modeling Approach: Final Technical Report. Office of Scientific and Technical Information (OSTI), enero de 2023. http://dx.doi.org/10.2172/1923906.
Texto completoBrown, W. R. Quantum Monte Carlo for vibrating molecules. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/414375.
Texto completoChudnovsky, Eugene M. Quantum Theory of Molecular Nanomagnets. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2001. http://dx.doi.org/10.21236/ada387444.
Texto completoRoy, Dibyendu, Yan Li, Alex Greilich, Yu Pershin, Avadh B. Saxena y Nikolai Sinitsyn. Spin noise spectroscopy of quantum dot molecules. Office of Scientific and Technical Information (OSTI), mayo de 2013. http://dx.doi.org/10.2172/1079572.
Texto completoDoyle, John. Ultracold Molecules: Physics in the Quantum Regime. Office of Scientific and Technical Information (OSTI), noviembre de 2014. http://dx.doi.org/10.2172/1163914.
Texto completoBarnett, R. N. Quantum Monte Carlo for atoms and molecules. Office of Scientific and Technical Information (OSTI), noviembre de 1989. http://dx.doi.org/10.2172/7040202.
Texto completoKress, Joel D., Lee A. Collins, Leonid Burakovsky, Stuart D. Herring, Christopher Ticknor y Scott Crockett. Simulations as Data: Quantum Molecular Dynamics. Office of Scientific and Technical Information (OSTI), octubre de 2012. http://dx.doi.org/10.2172/1052783.
Texto completoVoth, Gregory A. Scalable Software for Quantum Molecular Dynamics. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2001. http://dx.doi.org/10.21236/ada387360.
Texto completoPupillo, Guido y Peter Zoller. Ultracold Polar Molecules: New Phases of Matter for Quantum Information and Quantum Control. Fort Belvoir, VA: Defense Technical Information Center, julio de 2011. http://dx.doi.org/10.21236/ada546845.
Texto completo