Artículos de revistas sobre el tema "Quantum Melting"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quantum Melting.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Quantum Melting".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Agbenyega, Jonathan. "Quantum melting". Materials Today 13, n.º 6 (junio de 2010): 10. http://dx.doi.org/10.1016/s1369-7021(10)70098-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Belousov, A. I. y Yu E. Lozovik. "Quantum melting of mesoscopic clusters". Physics of the Solid State 41, n.º 10 (octubre de 1999): 1705–10. http://dx.doi.org/10.1134/1.1131073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chakravarty, Charusita. "Quantum delocalization and cluster melting". Journal of Chemical Physics 103, n.º 24 (22 de diciembre de 1995): 10663–68. http://dx.doi.org/10.1063/1.469852.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Burakovsky, Leonid y Dean L. Preston. "Unified Analytic Melt-Shear Model in the Limit of Quantum Melting". Applied Sciences 12, n.º 21 (4 de noviembre de 2022): 11181. http://dx.doi.org/10.3390/app122111181.

Texto completo
Resumen
Quantum melting is the phenomenon of cold (zero-temperature) melting of a pressure-ionized substance which represents a lattice of bare ions immersed in the background of free electrons, i.e., the so-called one-component plasma (OCP). It occurs when the compression of the substance corresponds to the zero-point fluctuations of its ions being so large that the ionic ordered state can no longer exist. Quantum melting corresponds to the classical melting curve reaching a turnaround point beyond which it starts going down and eventually terminates, when zero temperature is reached, at some critical density. This phenomenon, as well as the opposite phenomenon of quantum crystallization, may occur in dense stellar objects such as white dwarfs, and may play an important role in their evolution that requires a reliable thermoelasticity model for proper physical description. Here we suggest a modification of our unified analytic melt-shear thermoelasticity model in the region of quantum melting, and derive the corresponding Grüneisen parameters. We demonstrate how the new functional form for the cold shear modulus can be combined with a known equation of state. One of the constituents of the new model is the melting curve of OCP crystal which we also present. The inclusion of quantum melting implies that the modified model becomes applicable in the entire density range of the existence of the solid state, up to the critical density of quantum melting above which the solid state does not exist. Our approach can be generalized to model melting curves and cold shear moduli of different solid phases of a multi-phase material over the corresponding ranges of mechanical stability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Beck, Thomas L., J. D. Doll y David L. Freeman. "The quantum mechanics of cluster melting". Journal of Chemical Physics 90, n.º 10 (15 de mayo de 1989): 5651–56. http://dx.doi.org/10.1063/1.456687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Marx, D. y P. Nielaba. "Quantum ‘‘melting’’ of orientationally ordered physisorbates". Journal of Chemical Physics 102, n.º 11 (15 de marzo de 1995): 4538–47. http://dx.doi.org/10.1063/1.469502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tosatti, E. y R. Martoňák. "Rotational melting in displacive quantum paraelectrics". Solid State Communications 92, n.º 1-2 (octubre de 1994): 167–80. http://dx.doi.org/10.1016/0038-1098(94)90870-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kitamura, Toyoyuki. "A quantum field theory of melting". Physica A: Statistical Mechanics and its Applications 160, n.º 2 (octubre de 1989): 181–94. http://dx.doi.org/10.1016/0378-4371(89)90415-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Attanasio, C., C. Coccorese, L. Maritato, S. L. Prischepa, M. Salvato, B. Engel y C. M. Falco. "Quantum vortex melting in Nb/CuMn multilayers". Physical Review B 53, n.º 3 (15 de enero de 1996): 1087–90. http://dx.doi.org/10.1103/physrevb.53.1087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zyubin, M. V., I. A. Rudnev y V. A. Kashurnikov. "Numerical study of vortex system quantum melting". Physics Letters A 332, n.º 5-6 (noviembre de 2004): 456–60. http://dx.doi.org/10.1016/j.physleta.2004.08.064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Nakatsu, Toshio y Kanehisa Takasaki. "Melting Crystal, Quantum Torus and Toda Hierarchy". Communications in Mathematical Physics 285, n.º 2 (1 de agosto de 2008): 445–68. http://dx.doi.org/10.1007/s00220-008-0583-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Freiman, Yu A., V. V. Sumarokov, A. P. Brodyanskii y A. Jezowski. "Quantum melting in a system of rotors". Journal of Physics: Condensed Matter 3, n.º 21 (27 de mayo de 1991): 3855–58. http://dx.doi.org/10.1088/0953-8984/3/21/018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Pikus, F. G. y A. L. Efros. "New quantum Monte-Carlo method for strongly correlated systems. Quantum melting". Solid State Communications 92, n.º 6 (noviembre de 1994): 485–88. http://dx.doi.org/10.1016/0038-1098(94)90483-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

TANERI, SENCER. "A STOCHASTIC MECHANISM FOR DNA MELTING". International Journal of Modern Physics C 24, n.º 11 (14 de octubre de 2013): 1350077. http://dx.doi.org/10.1142/s0129183113500770.

Texto completo
Resumen
Deoxyribonucleic acid (DNA) is a kind of nucleic acid consisting of two strands which are made up of two Watson–Crick base pairs: adenine–thymine (AT) and guanine–cytosine (GC). There are three components of the total energy. These are the inharmonic stacking interaction, hydrogen bond interaction and the kinetic energy. Morse potential is used to mimic the hydrogen bond interaction between bases on the opposite strands for the overlapping π electrons, when two neighboring bases move out of the stack. The AT pair has 2 hydrogen bonds and the GC pair has 3 of them. The π electrons obey Bose–Einstein (BE) statistics, and the overlapping of them results in quantum fluctuation. It will be shown that this can be simplified into 〈Δy(t)Δy(t)〉 = 2DqΔt type fluctuation between the base pairs. Thus, a metropolis algorithm can be developed for the total potential energy by superposing two potential energy terms as well as including the quantum fluctuation in terms of random displacement of the π electrons. So, one can calculate the melting temperature of base pairs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Dolgopolov, Valerii T. "Quantum melting of a two-dimensional Wigner crystal". Uspekhi Fizicheskih Nauk 187, n.º 07 (enero de 2017): 785–97. http://dx.doi.org/10.3367/ufnr.2017.01.038051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Timm, Carsten, S. M. Girvin y H. A. Fertig. "Skyrmion lattice melting in the quantum Hall system". Physical Review B 58, n.º 16 (15 de octubre de 1998): 10634–47. http://dx.doi.org/10.1103/physrevb.58.10634.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Chui, S. T. y K. Esfarjani. "A Mechanism for Quantum Melting in Two Dimensions". Europhysics Letters (EPL) 14, n.º 4 (15 de febrero de 1991): 361–65. http://dx.doi.org/10.1209/0295-5075/14/4/013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dolgopolov, V. T. "Quantum melting of a two-dimensional Wigner crystal". Physics-Uspekhi 60, n.º 7 (31 de julio de 2017): 731–42. http://dx.doi.org/10.3367/ufne.2017.01.038051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Baroni, Stefano y Saverio Moroni. "Computer Simulation of Quantum Melting in Hydrogen Clusters". ChemPhysChem 6, n.º 9 (12 de septiembre de 2005): 1884–88. http://dx.doi.org/10.1002/cphc.200400657.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

MINAKOV, D. V., M. A. PARAMONOV y P. R. LEVASHOV. "Interpretation of pulse-heating experiments for rhenium by quantum molecular dynamics". High Temperatures-High Pressures 49, n.º 1-2 (2020): 211–19. http://dx.doi.org/10.32908/hthp.v49.837.

Texto completo
Resumen
We present quantum molecular dynamics calculations of thermophysical properties of solid and liquid rhenium in the vicinity of melting. We show that some pulse-heating experiments for rhenium can be independently described by the first-principle calculations. Our calculations predict significant volume change of about 6% at melting. We also provide our estimation of the enthalpy of fusion, which is about 33.6 kJ/mol.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Estarellas, M. P., T. Osada, V. M. Bastidas, B. Renoust, K. Sanaka, W. J. Munro y K. Nemoto. "Simulating complex quantum networks with time crystals". Science Advances 6, n.º 42 (octubre de 2020): eaay8892. http://dx.doi.org/10.1126/sciadv.aay8892.

Texto completo
Resumen
Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matter using tools from graph theory. The analysis of the graphs allows to visualizing time-crystalline order and to analyze features of the quantum system. For example, we explore in detail the melting process of a minimal model of a period-2 discrete time crystal and describe it in terms of the evolution of the associated graph structure. We show that during the melting process, the network evolution exhibits an emergent preferential attachment mechanism, directly associated with the existence of scale-free networks. Thus, our strategy allows us to propose a previously unexplored far-reaching application of time crystals as a quantum simulator of complex quantum networks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Feiner, Louis Felix, Andrzej M. Oleś y Jan Zaanen. "Quantum Melting of Magnetic Order due to Orbital Fluctuations". Physical Review Letters 78, n.º 14 (7 de abril de 1997): 2799–802. http://dx.doi.org/10.1103/physrevlett.78.2799.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Blatter, Gianni y Boris Ivlev. "Quantum melting of the vortex lattice in high-Tcsuperconductors". Physical Review Letters 70, n.º 17 (26 de abril de 1993): 2621–24. http://dx.doi.org/10.1103/physrevlett.70.2621.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Li, D. F., P. Zhang, J. Yan y H. Y. Liu. "Melting curve of lithium from quantum molecular-dynamics simulations". EPL (Europhysics Letters) 95, n.º 5 (17 de agosto de 2011): 56004. http://dx.doi.org/10.1209/0295-5075/95/56004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chakravarty, Charusita. "Isothermal-isobaric ensemble simulations of melting in quantum solids". Physical Review B 59, n.º 5 (1 de febrero de 1999): 3590–98. http://dx.doi.org/10.1103/physrevb.59.3590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Fratini, S., B. Valenzuela y D. Baeriswyl. "Incipient quantum melting of the one-dimensional Wigner lattice". Synthetic Metals 141, n.º 1-2 (marzo de 2004): 193–96. http://dx.doi.org/10.1016/j.synthmet.2003.10.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Alfè, D., G. D. Price y M. J. Gillan. "The melting curve of iron from quantum mechanics calculations". Journal of Physics and Chemistry of Solids 65, n.º 8-9 (agosto de 2004): 1573–80. http://dx.doi.org/10.1016/j.jpcs.2003.12.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chakravarty, C. y R. M. Lynden-Bell. "Landau free energy curves for melting of quantum solids". Journal of Chemical Physics 113, n.º 20 (22 de noviembre de 2000): 9239–47. http://dx.doi.org/10.1063/1.1316105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Müser, M. H. y J. Ankerhold. "Orientational quantum melting of linear rotors pinned onto surfaces". Europhysics Letters (EPL) 44, n.º 2 (15 de octubre de 1998): 216–21. http://dx.doi.org/10.1209/epl/i1998-00459-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kitamura, Toyoyuki. "A quantum field theory of melting and lattice dynamics". Physica A: Statistical Mechanics and its Applications 135, n.º 1 (marzo de 1986): 21–37. http://dx.doi.org/10.1016/0378-4371(86)90104-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Lu, Liping, Linqing Guo, Xiayan Wang, Tianfang Kang y Shuiyuan Cheng. "Complexation and intercalation modes: a novel interaction of DNA and graphene quantum dots". RSC Advances 6, n.º 39 (2016): 33072–75. http://dx.doi.org/10.1039/c6ra00930a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lozovik, Yu E., S. Yu Volkov y M. Willander. "Crystallization and quantum melting of few electron system in a spherical quantum dot: quantum Monte Carlo simulation". Solid State Communications 125, n.º 2 (enero de 2003): 127–31. http://dx.doi.org/10.1016/s0038-1098(02)00484-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wang, Lei y Qi Chen. "Study on the Stabilization of Heavy Metal by Cement with Quantum Chemistry". Advanced Materials Research 955-959 (junio de 2014): 2935–39. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.2935.

Texto completo
Resumen
The quantum chemistry is a kind of efficient theoretical research methodology; it has become an important foundation and core technology to the computational materials science. The researches of melting mechanism, doping mechanism, mechanism of hydration activity can be used in the related areas of stabilization of heavy metal by cement. Density functional theory is reviewed in the study of the affective mechanism of cement hydration activity and the intensity of hydration by heavy metal, the mechanism of fixating heavy metals by mineral and the mechanism of lowering melting temperature. It is considered that quantum chemistry can be used to make a simulation at the micro level to explore the mechanism of cement-enclosed heavy metals and has a perfect theoretical guiding significance for further research.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Chen, Yiping, Zuan Lin, Chenfang Miao, Qianqian Cai, Fenglan Li, Zongfu Zheng, Xinhua Lin, Yanjie Zheng y Shaohuang Weng. "A simple fluorescence assay for trypsin through a protamine-induced carbon quantum dot-quenching aggregation platform". RSC Advances 10, n.º 45 (2020): 26765–70. http://dx.doi.org/10.1039/d0ra03970e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Wong, Y. Joanna y G. V. Chester. "Quantum Monte Carlo study of pressure melting in Yukawa systems". Physical Review B 37, n.º 16 (1 de junio de 1988): 9590–607. http://dx.doi.org/10.1103/physrevb.37.9590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Fratini, S. y P. Quémerais. "Quantum and/or thermal melting of a polaron Wigner crystal". Le Journal de Physique IV 09, PR10 (diciembre de 1999): Pr10–259—Pr10–261. http://dx.doi.org/10.1051/jp4:19991065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Sanford, Lindsay N., Jana O. Kent y Carl T. Wittwer. "Quantum Method for Fluorescence Background Removal in DNA Melting Analysis". Analytical Chemistry 85, n.º 20 (26 de septiembre de 2013): 9907–15. http://dx.doi.org/10.1021/ac4024928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

de Andrade, Rubens y Oscar F. de Lima. "Melting line with quantum correction in a melt-texturedYBa2Cu3O7−δsample". Physical Review B 51, n.º 14 (1 de abril de 1995): 9383–86. http://dx.doi.org/10.1103/physrevb.51.9383.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Arulsamy, A. D. "Quantum thermodynamics at critical points during melting and solidification processes". Indian Journal of Physics 88, n.º 6 (8 de febrero de 2014): 609–20. http://dx.doi.org/10.1007/s12648-014-0450-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

LIU, QUAN y LI-RONG CHEN. "ANALYSIS OF MELTING FOR ALKALI EARTH AND ALKALI OXIDES BASED ON THE DIFFUSIONAL FORCE THEORY". Modern Physics Letters B 18, n.º 21n22 (30 de septiembre de 2004): 1101–7. http://dx.doi.org/10.1142/s0217984904007621.

Texto completo
Resumen
An analysis of the melting alkali earth and alkali oxides is presented using the concept of diffusional force. The calculations are performed by developing an ionic model based on Harrison's quantum mechanical treatment of overlap repulsive potential which takes into account the interactions up to second neighbors. Van der Waals dipole–dipole and dipole–quadrupole interactions calculated by more accurate methods are also included in the model. Using the formula by Fang, derived on the basis of thermodynamic analysis, the values of interionic distances for 8 alkali earth and alkali oxides at melting have been obtained. A simple model for melting is developed based on the diffusional force models. The values of Tm thus obtained are found to show fairly good agreement with experimental values of melting temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

NEILSON, DAVID, ALEXANDER R. HAMILTON y JAGDISH S. THAKUR. "QUANTUM GLASS TRANSITION AT FINITE TEMPERATURE IN TWO-DIMENSIONAL ELECTRON LAYERS". International Journal of Modern Physics B 27, n.º 29 (5 de noviembre de 2013): 1347004. http://dx.doi.org/10.1142/s0217979213470048.

Texto completo
Resumen
We have investigated the formation of a quantum glass at finite temperatures in low-density two-dimensional conducting systems in semiconductor heterostructures. Using a memory function formalism we have determined the quantum glass melting curve for weak disorder as a function of density and temperature, and show that the glass-liquid transition is only weakly affected by increasing temperature at the least up to the Fermi temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Penzkofer, Silapetere y Hegemann. "Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1". International Journal of Molecular Sciences 20, n.º 17 (21 de agosto de 2019): 4086. http://dx.doi.org/10.3390/ijms20174086.

Texto completo
Resumen
QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of Halorubrum sodomense by directed evolution. Here we report absorption and emission spectroscopic studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements at room temperature (23 ± 2 °C) and at 2.5 ± 0.5 °C. The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 65 ± 3 °C). In the protein melting process the originally present protonated retinal Schiff base (PRSB) with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 °C and around 23 °C caused gradual protonated retinal Schiff base isomer changes to other isomer conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic apoprotein restructurings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

GOLDMAN, VLADIMIR J. "EXPERIMENTAL EVIDENCE FOR THE TWO-DIMENSIONAL QUANTUM WIGNER CRYSTAL". Modern Physics Letters B 05, n.º 17 (20 de julio de 1991): 1109–19. http://dx.doi.org/10.1142/s0217984991001362.

Texto completo
Resumen
I review recently reported observations of an electric field threshold conduction and of the related ac voltage ("broadband noise") generation in low-disorder two-dimensional electron systems in extreme magnetic quantum limit. These phenomena are interpreted as direct evidence for formation of a pinned quantum Wigner crystal. Wigner crystal melting phase diagram as a function of filling factor ν was determined from the disappearance of the threshold behavior at higher temperatures. The solid phase was found to be reentrant in that it is observed to be interrupted by the ν = 1/5 fractional quantum Hall state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Zhao, Zhi Gang, Cun Li Dai y Lun Wu Zeng. "The Quantuam Melting Transitions with the Magnetic Field in Weakly Disordered Josephson Junction Arrays". Applied Mechanics and Materials 380-384 (agosto de 2013): 4845–48. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.4845.

Texto completo
Resumen
Using the resistively shunted junction model, we study the magnetic field induced dynamic melting transitions of a current-driven vortex system in two-dimensional weakly disordered Josephson junction arrays at zero temperature. From the unified model simulations, we find that the intrinsic quantum vortex liquid (QVL) phenomenon, which consistent with the recent experimental reports in disordered and superconducting MoGe films. The enhancement of critical current in the QVL phase arises from intrinsic quantum fluctuations in the moving vortex flow.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

CHEN, YONG P., G. SAMBANDAMURTHY, L. W. ENGEL, D. C. TSUI, L. N. PFEIFFER y K. W. WEST. "MICROWAVE RESONANCE STUDY OF MELTING IN HIGH MAGNETIC FIELD WIGNER SOLID". International Journal of Modern Physics B 21, n.º 08n09 (10 de abril de 2007): 1379–85. http://dx.doi.org/10.1142/s0217979207042860.

Texto completo
Resumen
Wigner solids in two-dimensional electron systems in high magnetic field B exhibit a striking, microwave or rf resonance, that is understood as a pinning mode. The temperature, Tm, above which the resonance is absent, is interpreted as the melting temperature of the solid. Studies of Tm for many B and many sample densities n show that Tm is a function of the Landau level filling ν alone for a given sample. This indicates that quantum mechanics figures importantly in the melting. Tm also appears to be increased by larger sample disorder.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Blazquez, S. y C. Vega. "Melting points of water models: Current situation". Journal of Chemical Physics 156, n.º 21 (7 de junio de 2022): 216101. http://dx.doi.org/10.1063/5.0093815.

Texto completo
Resumen
By using the direct coexistence method, we have calculated the melting points of ice I h at normal pressure for three recently proposed water models, namely, TIP3P-FB, TIP4P-FB, and TIP4P-D. We obtained T m = 216 K for TIP3P-FB, T m = 242 K for TIP4P-FB, and T m = 247 K for TIP4P-D. We revisited the melting point of TIP4P/2005 and TIP5P obtaining T m = 250 and 274 K, respectively. We summarize the current situation of the melting point of ice I h for a number of water models and conclude that no model is yet able to simultaneously reproduce the melting temperature of ice I h and the temperature of the maximum in density at room pressure. This probably points toward our both still incomplete knowledge of the potential energy surface of water and the necessity of incorporating nuclear quantum effects to describe both properties simultaneously.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Penzkofer, Alfons, Arita Silapetere y Peter Hegemann. "Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor Archon2". International Journal of Molecular Sciences 21, n.º 18 (8 de septiembre de 2020): 6576. http://dx.doi.org/10.3390/ijms21186576.

Texto completo
Resumen
Archon2 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of Halorubrum sodomense using robotic multidimensional directed evolution approach. Here we report absorption and emission spectroscopic studies of Archon2 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of Archon2 was studied by long-time attenuation coefficient measurements at room temperature (21 ± 1 °C) and at refrigerator temperature (3 ± 1 °C). The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 63 ± 3 °C). In the protein melting process protonated retinal Schiff base (PRSB) with absorption maximum at 586 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Storage of Archon2 at room temperature and refrigerator temperature caused absorption coefficient decrease because of partial protein clustering to aggregates at condensation nuclei and sedimentation. At room temperature an onset of light scattering was observed after two days because of the beginning of protein unfolding. During the period of observation (18 days at 21 °C, 22 days at 3 °C) no change of retinal isomer composition was observed indicating a high potential energy barrier of S0 ground-state isomerization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

WEXLER, CARLOS y ORION CIFTJA. "NOVEL LIQUID CRYSTALLINE PHASES IN QUANTUM HALL SYSTEMS". International Journal of Modern Physics B 20, n.º 07 (20 de marzo de 2006): 747–78. http://dx.doi.org/10.1142/s0217979206033632.

Texto completo
Resumen
Since 1999, experiments have shown a plethora of surprising results in the low-temperature magnetotransport in intermediate regions between quantum Hall (QH) plateaus: the extreme anisotropies observed for half-filling, or the re-entrant integer QH effects at quarter filling of high Landau levels (LL); or even an apparent melting of a Wigner Crystal (WC) at filling factor ν = 1/7 of the lowest LL. A large body of seemingly distinct experimental evidence has been successfully interpreted in terms of liquid crystalline phases in the two-dimensional electron system (2DES). In this paper, we present a review of the physics of liquid crystalline states for strongly correlated two-dimensional electronic systems in the QH regime. We describe a semi-quantitative theory for the formation of QH smectics (stripes), their zero-temperature melting onto nematic phases and ultimate anisotropic-isotropic transition via the Kosterlitz–Thouless (KT) mechanism. We also describe theories for QH-like states with various liquid crystalline orders and their excitation spectrum. We argue that resulting picture of liquid crystalline states in partially filled LL-s is a valuable starting point to understand the present experimental findings, and to suggest new experiments that will lead to further elucidation of this intriguing system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Feng, Yexin, Ji Chen, Dario Alfè, Xin-Zheng Li y Enge Wang. "Nuclear quantum effects on the high pressure melting of dense lithium". Journal of Chemical Physics 142, n.º 6 (14 de febrero de 2015): 064506. http://dx.doi.org/10.1063/1.4907752.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Chen, Yong P., G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer y K. W. West. "Melting of a 2D quantum electron solid in high magnetic field". Nature Physics 2, n.º 7 (4 de junio de 2006): 452–55. http://dx.doi.org/10.1038/nphys322.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía